Correction of the chlorophyll-a concentration profile in the Black Sea: in situ measurements and measurements from bio-argo floats

Vyacheslav Suslina, Tatyana Churilovaa, violeta Slabakovac, Natalia Moiseevaa, Tatiana Efimovab, Svetlana Pryakhinaa

aMarine Hydrophysical Institute RAS, Sevastopol, Russia, slava.suslin@gmail.com
bInstitute of Marine Biological Research named after A.O. Kovalevsky RAS, Sevastopol, Russia
cInstitute of Oceanology, BAN, Varna, Bulgaria

Goal
Using current available data on chlorophyll-a concentration profiles, including in situ measurements and measurements from bio-argo floats, to make a correction of the relationship between chlorophyll-a concentration in the upper layer of the Black Sea and its profile with depth, obtained earlier from the results of long-term field data summarizing [Finenko et al., 2005].

Data
634 profiles from three bio-argo floats:
- PI Violeta Slabakova (basbio001d)
- PI Pierre-Marie Poulain (Argo-Italy ogsbio007c)
- PI Sorin Balan (GeoECoMar gembio001b)

In situ measurements from scientific expeditions:
- RV Pr.Vodyanitsky-70 (August 2011) (Warm: 9 profiles)
- RV Pr.Vodyanitsky-78 (November-December 2014) (Cool: 17 profiles)

Method

\begin{align*}
\text{relative error of the integral profile} & = \frac{|I(\text{model}) - I(\text{float})|}{I(\text{float})} \\
\text{relative error taking into account profile features} & = \sum \frac{|C_i(h, \text{model}) - C_i(h, \text{float})|}{C_i(h, \text{float})} \times \frac{1}{w(h, \text{float})} \\
\end{align*}

TUNING: BIO-ARGO FLOATS

![Figure Old (F) and New (N) parameters of the Chla profile. (C) and (W) are float's profiles for Cool and Warm periods, respectively.](image)

Conclusion: the corrected expression for the recovery of the chlorophyll-a concentration profile by its value in the upper layer of the Black Sea for all seasons has obtained.

Acknowledgments
The work was carried out in the framework of the RF state task according to plan of scientific research of the Marine Hydrophysical Institute (theme No 0827-2018-0002), as well as with the support of the RFBR, grant No 17-05-00113.