Breakout Workshop: Scientific computing and the Open Source software revolution: Opportunities for ocean colour science

Joaquín E. Chaves (NASA GSFC/SSAI), Erdem M. Karaköylü (NASA GSFC/SAIC), Joel P. Scott (NASA GSFC/SAIC)
Key questions:

● What recent shifts among Ocean Color community have there been towards open source tools?

● How and why is the community using these tools?

● How are teaching, mentoring, and research deliverables changing by open source?

● Are these tools promoting reproducibility, code preservation, accessibility, diversity & inclusion?
What is Open Source/Science software?

“Open source software is software with source code that anyone can inspect, modify, and enhance”
Take-aways:

1) Everyone (including newcomers) have something to offer
2) Popular/emerging open source tools are Python3, Jupyter-Notebook, Xarray, CartoPy, Git versioning protocol, etc
3) Diverse factors have brought community members to open source tools
4) Lack of licensing support
5) Broader international reach
6) Vast number of resources out there to get started
7) Stackoverflow
8) Cory Schafer on Youtube
9) Scribd book resource website to read books on Python

Place to start

1) Try simple task
2) Convert code from old language to Python
3) Play around with someone else’s code
4) Google
5) Attend conferences, dataviz groups, PyLadies chapters, other local resources
Timeline of Transition From IDL to Python

1999-2008
- IDL Only
2009
- Simple Unix shell script examples
2010
- SeaDAS 7 Introduced
2013
- Simple Python examples at Cornell
2014
- Python Tutorial
2015
- 100% Python Only Abroad
- 100% Python Only Cornell

Source: B. Monger, Cornell U.
Dr. Myung-Sook Park, KIOST:

Python for multi-year GOCI ocean color products analysis: sharing the advantages and issues:

IDL user for 15 years; switched to Python about a year ago:

Reasons:
--Freedom to use on multiple platforms, computing speed, multiple packages available
Leveraging Python & Jupyter Notebook to validate satellite Ocean Color retrievals via SeaBASS data (co-chair: Joel. Scott)

Probabilistic Programming Workflow in Python (co-chair Erdem. Karaköylü, NASA GSFC/SAIC)

Browser-based environment to perform, document, annotate, & annotate computational ideas in various languages:

JULia-Python-R

Links to talks:

https://github.com/jpscot/IOCS_2019_Busan_OpenScience
https://github.com/madHatter106/IOCS_BUSAN_2019
• Develop a community ‘open science’ statement
 • Good progress making data open, can we encourage open software too (e.g., processors).
 • Support for open source use in training

• Expand great work of deriving community standards for protocols/providing consolidated reports.
 • Can we do this for open source software use in our community? E.g. provide ocean colour examples with open source code/standards/versioning etc.

• Raising use of community repositories
 • Great history of doing this with data
 • Share useful snippets
 • Standards to be discussed! Licencing and attribution.
 • What are ‘common workflows’ for Ocean Colour (and beyond?)
Actions:

Preliminary Working group?

Could we have a code repository that exists as a live IOCCG report
Titled: Open Science Principles for Ocean Colour
Would we need a curator?
Do it as a https://github.com/eumetsat-training
https://gitlab.com/ben.loveday/EUMETSAT_training_jupyter_notebooks

Allow code submissions as demos/examples
— common workflows: plotting, matchups,
 adding cruise track to satellite data
Propose workshop to scope out what this would be.