Status of GOCI-II development

Pierre COSTE, AIRBUS Defence & Space

IOCS 2019, April 2019
Content

- Introduction
- Description of instrument design and main characteristics
- Development schedule
- Main test results
- Conclusion / questions
Comparison of GOCI-II and GOCI requirements

<table>
<thead>
<tr>
<th>Requirements</th>
<th>GOCI</th>
<th>GOCI-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission Life Time</td>
<td>7 years</td>
<td>10 years</td>
</tr>
<tr>
<td>Duty Cycle (Local Area : LA)</td>
<td>8 times / day</td>
<td>10 times / day</td>
</tr>
<tr>
<td>Duty Cycle (Full Earth Disk : FD)</td>
<td>-</td>
<td>1 time / day during day time</td>
</tr>
<tr>
<td>Observation Time</td>
<td>≤ 30 minutes for LA</td>
<td>≤ 30 minutes for LA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≤ 240 minutes for FD</td>
</tr>
<tr>
<td>Spatial resolution (GSD)</td>
<td>≤ 500 m @ center of Ref. LA</td>
<td>≤ 250 m @ Nadir</td>
</tr>
<tr>
<td></td>
<td>(130°E, 36°N)</td>
<td>(Ref. LA : 2.500 km x 2.500 km)</td>
</tr>
<tr>
<td>Spectral Range</td>
<td>400 nm – 900 nm (VIS, NIR)</td>
<td>370 nm – 900 nm (VIS, NIR)</td>
</tr>
<tr>
<td>Number of spectral bands</td>
<td>8 narrow bands (10 to 40 nm)</td>
<td>12 narrow bands (10 to 40 nm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 wide band for star imaging</td>
</tr>
<tr>
<td>SNR @ nominal ocean radiance</td>
<td>Between 750 and 1200</td>
<td>Between 750 and 1200</td>
</tr>
<tr>
<td>MTF @ Nyquist frequency</td>
<td>> 0.3</td>
<td>> 0.25</td>
</tr>
<tr>
<td>Calibration</td>
<td>Sun calibration (once / day)</td>
<td>Sun calibration (once / day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moon calibration (once / month)</td>
</tr>
<tr>
<td>Autonomy</td>
<td>@ S/L level</td>
<td>24h (@ instrument level)</td>
</tr>
<tr>
<td>Band</td>
<td>Band Center</td>
<td>Band width</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>B1</td>
<td>380 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B2</td>
<td>412 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B3</td>
<td>443 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B4</td>
<td>490 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B5</td>
<td>510 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B6</td>
<td>555 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B7</td>
<td>620 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B8</td>
<td>660 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B9</td>
<td>680 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>B10</td>
<td>709 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>B11</td>
<td>745 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B12</td>
<td>865 nm</td>
<td>20 nm</td>
</tr>
<tr>
<td>B13</td>
<td>Wideband</td>
<td>>300 nm</td>
</tr>
</tbody>
</table>
Filter Wheel: GOCI to GOCI-II

GOCI Filter Wheel
(8 filters + 1 dark position)

GOCI-II Filter Wheel
(12 nominal narrow band filters + 1 large band filter + 1 extra B9 filter + 1 dark position)
DEFENCE AND SPACE

Field of Regard

GOCI-II FoV

FD Area (orange)

Earth disk (green)

GOCI-II minimum Field of Regard

Dashed areas for Moon and Star imaging
Imaging modes

- Image acquisition done slot by slot with 2 integration times:
 - Large integration time for high SNR on Ocean scenes
 - Low integration time for land and clouds scenes
- All data are downloaded to ground
Overall dimensions: X 1520 mm, Y 1005 mm, Z 908 mm
GOCI-II Design overview (2/3)

Calibration Wheel Support Structure

Filter Wheel Assembly

Thermal Radiators

Telescope

Pointing Mirror

2-axes Pointing Mechanism

Payload Interface Plate (PIP)

Overall dimensions: X 1520 mm, Y 1005 mm, Z 908 mm
GOCI-II Design overview (3/3)

Calibration Wheel Assembly
4 positions:
- Open
- Close
- Main diffuser
- Second diffuser

Filter Wheel Assembly

Focal Plane Assembly

Front End Electronics

Telescope

2-axes Pointing Mechanism

MLI, radiators and harness removed from display
GOCI-II Development schedule

- Answer to Request for Proposal in March – April 2013
 - Selection of Airbus D&S
- Contract signature and project kick off in July 2013
- System Design Review: October 2013
- Preliminary Design Review: mid 2014
- Critical Design Review: October 2015
- Test Readiness Review: December 2016
 - Start of performance tests in Airbus Toulouse facilities
- Pre-Environmental test Review: end June 2017
 - End of tests in Toulouse => agreement for shipment to Korea

With involvement of a Korean Joint Development Team dispatched in Toulouse
GOCI-II Joint Team (@ CDR in Toulouse)
GOCI-II Development schedule

- Transportation to Korea (end June 2017)

- Four months of intensive tests in KARI facilities (Daejon)
 - Environmental tests (EMC, vibration, TV)
 - Radiometric and calibration tests

- Pre-Shipment Review (delivery): end October 2017

- Instrument integration and test at GK2B S/L level
 - Instrument electronics coupling with S/L electronics: done
 - Mechanical instrument mounting: done
 - S/L tests: functional (done), environmental

- Launch: early 2020

- In orbit tests

With about 10 engineers from Airbus dispatched in Korea

With remote support from Airbus team + physical attendance when necessary

With about 10 engineers from Airbus dispatched in Korea

With remote support from Airbus team + physical attendance when necessary
GOCI-II sensor unit at delivery

GOCI-II sensor unit, inside on-ground supporting structure, with electronics

GOCI-II sensor unit with harness connected
GOCI-II Performance tests (1/3)

<table>
<thead>
<tr>
<th>Test</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional tests</td>
<td>Verification and validation of all functional requirements and interfaces with the S/L. The on-board firmware implements a self test for quick good health verification of the main functions (mechanisms, imaging, thermal control).</td>
</tr>
<tr>
<td>Pointing tests</td>
<td>Characterization of the Pointing Models: (1) command model for pointing at a given target and (2) Line of Sight calculation from given Pointing Mechanism encoder telemetries</td>
</tr>
<tr>
<td>Radiometric tests</td>
<td>Determination of the instrument gain and non linearity for all spectral bands (from input radiance to instrument output in LSB and reciprocally) Test done in Toulouse with Airbus Integrating Sphere and in KARI with KARI I.S.</td>
</tr>
<tr>
<td>Polarization test</td>
<td>Measure of the instrument sensitivity to polarized input light</td>
</tr>
<tr>
<td>MTF and co-registration tests</td>
<td>The MTF is a measure of the instrument resolution (contrast). The co-registration corresponds to the co-alignment of the spectral bands LoS. These performances are sensible to air effects => the real performances are measured in vacuum.</td>
</tr>
</tbody>
</table>
GOCI-II Performance tests (2/3)

<table>
<thead>
<tr>
<th>Test</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral tests</td>
<td>Instrument spectral response is calculated from accurate measures at component level (filters in particular). Measurements at instrument level introduced as end-to-end verification.</td>
</tr>
<tr>
<td>Straylight tests</td>
<td>Measurement of the ghost and spurious light reaching the detector and determination of a correction model if the straylight exceeds the target</td>
</tr>
<tr>
<td>ISRD tests</td>
<td>Measurement of the Inter Slot Radiance Discrepancy (ISRD) and determination of a correction model if the ISRD exceeds the target</td>
</tr>
<tr>
<td>Calibration tests</td>
<td>Characterization of the solar diffuser (model of radiance diffused inside the instrument as a function of the sun irradiance and sun position). Test done in KARI with KARI’s sun simulator</td>
</tr>
<tr>
<td>Reference test</td>
<td>A reference test made of a sub set of functional, radiometric and pointing tests has also been defined and run several times to check good health of the instrument at different stages of the test sequence (before / after transportation to Korea; before / after vibration test; before delivery)</td>
</tr>
</tbody>
</table>

IOCS 2019 - April 2019
Airbus Defence & Space Confidential & Proprietary Information
GOCI-II Performance tests (3/3)

<table>
<thead>
<tr>
<th>Test</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC tests (conductive and radiative)</td>
<td>Verification that the instrument is not sensible to electromagnetic perturbations coming from the S/L and reciprocally that the instrument do not generate electromagnetic perturbations towards the S/L</td>
</tr>
<tr>
<td>Mass & CoG measurement</td>
<td>Mass measurement and Center of Gravity determination</td>
</tr>
<tr>
<td>Vibration tests</td>
<td>Verification that the instrument withstands the mechanical loads during launch (sine vibrations and acoustic tests)</td>
</tr>
<tr>
<td>Thermal Vacuum test</td>
<td>Functional and performance tests in representative thermal and vacuum environment => validation of the instrument thermal control, of the radiometric performances at nominal detector temperature and of the MTF & coregistration performances</td>
</tr>
</tbody>
</table>
Typical test configurations

Test configuration with Collimator OGSE for
- Spectral
- MTF
- Registration
- Straylight in the field

Test configuration with Integrating Sphere for
- Straylight out of field
- Radiometry
- ISRD
- Polarisation
Test results – Pointing tests

- Pointing model: combination of
 - Focal plane model (Los for each pixel before reflection on Pointing Mirror): includes optical distortion
 - Pointing Mirror Normal model (orientation of PM normal as function of actuator coder angles): Measurement with Laser Tracker over full useful range: residual model error < 10 µrad rms

- End-to-end Pointing model verification within Field of Regard with theodolites

- All results consistent with measurement accuracy

- Confirmation of validity of the model and of the associated parameters
Test results – Radiometric tests

q Radiometric tests have been performed in two steps
 ŷ in Airbus with Airbus Integrating sphere
 ŷ in KARI for Absolute Radiometric tests with KARI I.S.
 ŷ Both set of measured gain parameters are consistent

q All tests results are compliant:
 ŷ Accurate radiometric model for input radiance restitution
 (3rd order model with 2 non linearity coefficients)
 ŷ High gains values ensuring compliance to SNR requirements

q Determination for each spectral band of nominal integration times and numbers of accumulations for in-orbit operations

q Measurement also of gain variation with Angle of Incidence on Pointing Mirror => correction coefficients determined
Test results – MTF and co-registration tests

- MTF & Co-registration tests have been performed during TV test, in KARI

- Tests results:
 - Performances compliant for all bands in both E/W and S/N directions
 - Capability to adjust performance (focus) by changing M1 temperature has been shown during TV tests.

Recorded Knife edge image and processing

Coregistration pattern

Average of all measurements in vacuum with coregistration pattern
Test results – Spectral tests

Spectral tests have been performed in Airbus Toulouse

- Measurement at ambient with a collimator equipped of a monochromator at focal plane

Tests results

- Measurements for all bands are consistent with predictions based on spectral measurements performed on filters and mirrors
- Performances are compliant with requirements.
Test results – Calibration tests

- Calibration tests have been performed in KARI using KARI’s Sun Simulator
 - Characterisation of Main diffuser diffusion function
 - Measurement of the ratio main diffuser / secondary diffuser
 - Useful range:
 - Θ 25 – 35 deg
 - φ 90 – 270 deg

- Tests results
 - Tests confirmed low sensitivity to sun angle as expected from diffuser sample test results (quasi-lambertian properties)
 - Diffuser model derived from the test results $L_{\text{diff}} = \rho(\Theta, \varphi).E_{\text{sun}} \cos(\Theta)/\pi$
Full Imaging Test results (1/2)

q Acquisition of a test image in 12 slots in AUTONOMOUS mode (as in orbit)
q Raw image (12 slots – left) and reconstructed image (right) using Pointing Law
 only offset correction applied below

IEUA#4 Full Image B4 HG 8100

IEUA#4 Full Image B4 reconstructed
Full Imaging Test results (2/2)

q Zoom on overlap areas showing that pointing model is OK
 only offset correction applied below
Conclusion

- GOCI-II has been successfully submitted to a complete performance and environmental tests campaign.
- No anomaly has been observed at GOCI-II level during the environmental test campaign.
- GOCI-II high level of performance has been confirmed.
- Test campaign has been successfully completed by KARI, KIOST and Airbus Joint Development Team with support of KARI team in charge of facilities: great thanks to all!
- GOCI-II is now integrated on the satellite and follows the test sequence at satellite level.

On the road for launch early 2020.
Thank you