

International Ocean Colour Science Meeting 2023

Advancing Global Ocean Colour Observations

Poster Session 2 Lightning Talks

Developing a **Data-Driven Model to Minimize Adjacency Effects** in Landsat-8 Imagery SSA

Christopher Begeman^{1,2} & Nima Pahlevan^{1,2} ¹Science Systems and Applications Inc., Lanham, MD; ²NASA Goddard Space Flight Center, Greenbelt, MD

Mixture Density Network Design

AE Estimations for Lake Okeechobee

For more in-depth information please visit poster #4

AE Validations from In-Situ Matchups

Poster Title: Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) Instrument Overview

Author Names: <u>Dustin Berkovitz</u>¹, John Bloomer¹, Steven Persh¹

Affiliations: [1] Raytheon, El Segundo, CA

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations. GLIMR Instrument Leverages Existing Hardware and Designs to Enable Pathfinding GEO Ocean Color Science in an Affordable System

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.

First investigation of freshwater hyperspectral backscattering across multiple trophic levels in the Laurentian Great Lakes

Karl Bosse, Michigan Tech Research Institute (MTRI), <u>krbosse@mtu.edu</u>

Mike Sayers, PhD, MTRI,

Andrea Vander Woude, PhD, NOAA GLERL

Exploration of new hyperspectral b_{bp} dataset

Michigan Tech Research Institute

SQOOP: Spaceborne Quantification of Ocean micrO-Plastics

Heidi M. Dierssen, University of Connecticut Graham Trolley, M.S. Student, UCONN Kirk Knobelspiesse, NASA GSFC Amir Ibrahim, NASA GSFC Jacek Chowdhary, Columbia University/ NASA GISS Matteo Ottaviani, Terra Research Inc / NASA GISS Oskar Landi, Photographer, Consultant Lorraine Remer, Univ. Maryland Baltimore County Shungu Garaba, Univ. Oldenburg

Photo Credit: Oskar Landi

- Our analysis reveals potential for detecting plastics at concentrations **100 times** greater than those reported in the gyre
- Improved detection ability is observed under ideal conditions with low Aerosol Opitcal Depth (AOD) and small Aerosol Fine Mode Fraction (FMF)

Fractional coverage of plastic in a pixel

Deriving inherent optical properties and associated uncertainties from decomposition of hyperspectral non-water absorption

Brice Grunert^{1*}, Audrey Ciochetto^{1,2}, Colleen Mouw²

¹Cleveland State University ²University of Rhode Island ^{*}b.grunert@csuohio.edu

DAISEA

(Derivative Analysis and Iterative Spectral Evaluation of Absorption)

Come see our poster to see how it performs!

Hyperspectral UV-Blue Atmospheric Correction for the Ocean Color Instrument (OCI)

<u>David P. Haffner^{1,2}</u>, Nickolay A. Krotkov², Alexander P. Vasilkov^{1,2}, Zachary T. Fasnacht^{1,2}, Robert J. D. Spurr³, Patricia Castellanos², Joanna Joiner², Omar Torres², Changwoo Ahn^{1,2}, Wenhan Qin^{1,2}

> ¹Science Systems and Applications, Inc. ²NASA Goddard Space Flight Center ³RT Solutions, Inc.

SFC UMBC · SRON/Airbus NL

jar 🕴

Poster 24

International Ocean Color Science Meeting 13-17 November 2023, St. Petersburg, FL

RTM-based atmospheric correction algorithm for OCI in the UV and blue

- Hyperspectral satellite Rrs retrievals from Aura/OMI have been used to demonstrate our UV-blue OCI AC.
- OCI proxy data prepared fm. smoothed OMI UV-blue spectra.
- Online ocean-atmosphere RTM calculations using VLIDORT.
- Using assimilated aerosol optical properties (MERRA-2) with AOD scaled to OMI retrievals.
- MOBY Rrs comparisons used to evaluate our AC approach.

Introduction of the novel OLCI Atmospheric Correction for diverse Optical Water Types A4O

Martin Hieronymi¹, Shun Bi¹, Daniel Behr¹ & Eike M. Schütt^{1,2}

- 1) Department of Optical Oceanography, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- 2) Earth Observation and Modelling, Kiel University, Kiel, Germany

2023 International Ocean Colour Science Meeting St. Petersburg, FL, USA, 14-17 November 2023

Bridging optical Oceanography & Limnology

- A4O is a novel atmospheric correction for OLCI designed for all natural waters
- Special emphasis on absorbing (dark) and scattering (bright) waters & phytoplankton diversity
- Features: Provides realistic Rrs spectra, high classifiability in diverse OWT frameworks, low AC-induced noise (high number of possible match-ups), internal estimate of uncertainties, useful flagging

Multi-sensor assessment of accidental oil spills in the Bay of Campeche

Junnan Jiao^{1, 2}, Chuanmin Hu², Yingcheng Lu¹, and Yongxue Liu¹

International Institute for Earth System Science, Nanjing University, Jiangsu, 210046, China;
 College of Marine Science, University of South Florida, St. Petersburg, FL, 33701, USA;
 Corresponding to: Y. Lu (luyc@nju.edu.cn), C. Hu (huc@usf.edu)

OLI 2023-07-01 EK Balam Tango Hoho 2023-07-01 EK Balam Tango Hoho 2023-07-01 EK Balam Tango Hoho EK Balam Tango Hoho

LO8

SIA

2. Timeline of the oil leakage

4. Oil spill characterization (Optical + TIR)

BT(K)

296

BT (K)

POSTER 31

Operational Application of Satellite Ocean Color Data to Improve Ocean Model Performance

Jason K. Jolliff, Travis A. Smith, Sherwin Ladner, Richard L. Crout, Adam Lawson

All Authors:

U.S. Naval Research Laboratory

Stennis Space Center, Mississippi, USA

Operational Application of Satellite Ocean Color Data to Improve Ocean Model Performance

POSTER 31

6.4 Visible Band Satellite Data to Improve Ocean Model Radiative Transfer (VISOR) CONOPS

Operational Modeling Systems FNMOC

COAMPS Air-Sea Sensitivity

Realistic Attenuation

COAMPS (Air/Ocean/Wave Current Configuration)

6 7 8 JUNE 2015 (day)

CONTROL

COMMENT and CI are registered trademeric of the Neterl Research Laterate

Studies of oceanic geophysical turbulence using observations of geostationary ocean color imageries

Eun Ae Lee and Sung Yong Kim

Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology,

- Geostationary ocean color imagery (GOCI)-derived 0.5 km and daytime hourly chlorophyll concentration maps (CHLs; 8 times a day): Tracers
- High-frequency radar (HFR)-derived 1-km and hourly surface currents: Currents

SPATIAL - TEMPORAL DYNAMICS OF WATER QUALITY IN LAKE OKEECHOBEE AND ITS IMPACT ON ENVIRONMENTAL HEALTH

Moses Kiwanuka, Rafael Carbonell, Andrea Bustos, Kimberly Gutierrez, Maruthi Sridhar Balaji Bhaskar.

Department of Earth and Environment, Florida International University, 11200 SW 8th St, Miami, FL 33199.

Global automated extraction of bathymetric photons from ICESat-2 data based on a PointNet++ model

Anders Knudby^{1,2}, Yiwen Lin¹

University of Ottawa, Ottawa, Canada, <u>aknudby@uottawa.ca</u>; <u>yiwen.lin@uottawa.ca</u>
 Liquid Geomatics Ltd., Ottawa, Canada, <u>liquidgeomaticscanada@gmail.com</u>

Effects of atmospheric and glint correction approaches on remote sensing reflectance estimation from airborne imaging spectroscopy

Marcel König¹ [mkoenig3@asu.edu], Kelly L. Hondula¹, Brice K. Grunert², Niklas Bohn³, Jie Dai¹, Elahe Jamalinia¹, Nicholas R. Vaughn¹, Gregory P. Asner¹

¹Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA ²Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

- 2 atmospheric correction algorithms (ISOFIT & ATREM)
- analytical 4-component sun & sky glint correction
- sun glint correction by Gao & Li (2021)
- evaluation based on field spectroscopy

Accuracy of SeaHawk-HawkEye remote sensing reflectance products in globally distributed aquatic sites

Srinivas Kolluru^{1*}, Sara Rivero Calle¹ and Philip J. Bresnahan², Kohei Arai³, Timothy S Moore⁴, Susan Kratzer⁵

¹Skidaway Institute of Oceanography, University of Georgia, Savannah 31411, GA (USA)

² Center for Marine Science, University of North Carolina, Wilmington 28409, NC (USA)

³Saga University,1 Honjomachi, Saga, 840-8502, Japan

⁴Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce 34946, FL (USA)

⁵ Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm

Correspondence: <u>Srinivas.Kolluru@uga.edu</u>, <u>rivero@uga.edu</u>

Srinivas Kolluru - Poster #36

HawkEye – Ocean Color CubeSat – low cost

- ~120 m spatial resolution
- ~8000+ images acquired in orbit
- 8 spectral bands

Result: HawkEye' Rrs accuracy varied with wavelength, with Rrs at 556 nm band being the most accurate and with decreasing accuracy towards blue bands.

Fig. 2 A) HawkEye Image over Southern California (Feb 18, 2022) with AERONET-OC 'USC Sea PRIRSM 2 site' (Red star) **B**) Rrs comparison between HawkEye (yellow line) and AERONET-OC 'USC SeaPRISM 2' derived from IOP (red) and f/Q (black) algorithms on Feb 18, 2022 (left panel) and with other sensors data (**C**).

Estimation of absorption coefficient of oceanic waters via band difference of remote sensing reflectance and its applications

Zhongping Lee MEL, COES, Xiamen University

In collaboration with

Longteng Zhao, Chuanmin Hu, Daosheng Wang, Junfang Lin, Shaoling Shang

$$MBD_{Rrs} = R_{rs}(\lambda_G) - \left[R_{rs}(\lambda_B) + \frac{\lambda_G - \lambda_B}{\lambda_R - \lambda_B} \left(R_{rs}(\lambda_R) - R_{rs}(\lambda_B)\right)\right]$$

 $a(440) = 10^{-2.21 + 1.01 \operatorname{Exp}(228.82 \times MBD_{Rrs440})}$

The threshold of MBD_{Rrs440} changed from -0.0005 sr¹ to 0.0005 sr¹; \rightarrow 75% of global ocean to ~91%.

UNIVERSITY

Using Planet Satellite Imagery to Map and Quantify Harmful Algal Blooms in Chesapeake Bay Tributaries

¹Mary LePere, ²Dr Victoria Hill Department of Ocean and Earth Science, Old Dominion University mlepe001@odu.edu, ²vhill@odu.edu **YORK RIVER** August 26th, 2022

We can successfully calculate chlorophyll content from satellite imagery during bloom events

Manuel, A. and Blanco, A. C.: **TRANSFORMATION OF THE NORMALIZED DIFFERENCE CHLOROPHYLL INDEX TO RETRIEVE CHLOROPHYLL-A CONCENTRATIONS IN MANILA BAY**, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4/W6-2022, 217–221, https://doi.org/10.5194/isprs-archives-XLVIII-4-W6-2022-217-2023.

International Ocean Colour Science Meeting 2023 | 14-17 November 2023 St. Pertersburg, FL, USA

Poster#39

Enhancing the reliability of GCOM-C/SGLI-derived chlorophyll-a data in the upper Gulf of Thailand

<u>Jutarak Luang-on¹</u>, Eko Siswanto¹, Kazunori Ogata¹, Mitsuhiro Toratani², Anukul Buranapratheprat³, Joji Ishizaka⁴

¹Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Japan

²Tokai University - Shonan Campus, Japan

³Burapha University, Thailand

⁴Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Japan

GCOM-C: Global Change Observation Mission - Climate "SHIKISAI" SGLI: Second generation GLobal Imager

Email: jutaraklua@jamstec.go.jp

The 2023 super Green *Noctiluca scintillans* blooms (Jul ~ Sep 2023) → Hypoxia → massive fish mortality

GCOM-C/SGLI image in the upper Gulf of Thailand: 18 August 2023

GCOM-C: Global Change Observation Mission - Climate "SHIKISAI" SGLI: Second generation GLobal Imager

Email: jutaraklua@jamstec.go.jp

HydraSpectra: lowcost optical abovesurface water quality sensor

Tim Malthus, <u>Mark Baird</u>, Faisal Islam, Nathan Drayson, Erin Kenna, Xiubin Qi, Tarun Sanders, Tim Bolton, Stephen Gensemer

HydraSpectra

- Measures above surface reflectances to support continuous:
 - Water quality monitoring
 - Satellite validation
 - Algal bloom alerting
- Patented technology
- Low cost, low maintenance

Masud-UI-Alam, Poster # 43

SeaHawk Low-Cost Ocean Color CubeSat Produces High Spatial Resolution and High-Quality Data: A Comparison with NOAA-20 VIIRS, NASA MODIS-Terra and MODIS-Aqua

<u>Md Masud-Ul-Alam^{1,2}</u>, Benjamin Lowin¹, Gene Carl Feldman³, Alan Holmes⁴, John Morrison⁵, Liang Hong³, Alicia Scott³, Philip Bresnahan⁵, Sean Bailey³, and Sara Rivero-Calle¹

¹University of Georgia Skidaway Institute of Oceanography, Savannah GA (USA), ²BSMR Maritime University, Dhaka (Bangladesh), ³NASA Goddard Space Flight Center, MD (USA), ⁴SBIG Goleta, CA (USA), ⁵University of North Carolina Wilmington, NC (USA)

Correspondence: masudocndu@uga.edu, rivero@uga.edu

SBIG

Spatio-Temporal Variations of Bio-Optical Properties in Coastal Arctic Waters

Wesley J. Moses, Steven G. Ackleson, J. Blake Clark, Ahmed El-Habashi, Daniel W. Koestner, Alana Menendez, Jonathan Sherman, Kyle Turner, Maria Tzortziou, and Hisatomo Waga

Funded by U.S. Naval Research Lab Project Work Unit #72-1L28 and NASA OBB Project Grant # 80HQTR21T0050

NOMAD v3.0: Supporting PACE validation activities

Violeta Sanjuan Calzado, Christopher Proctor, Jeremy Werdell

Ocean Ecology Lab. NASA Goddard Space Flight Center. Maryland. USA

PACE

NOMAD 3.0: Supporting PACE mission for validation and algorithm development

- Hyperspectral database
- Product uncertainty
- AOP, IOP, biogeochemical products, atmospheric products
- Relational database
- Global coverage
- Data available on SeaBASS
- Traceable to SeaBASS files
- Flag system

bit	abbreviation	usage	Description
0	AOP	D	Radiometry, Lw or Rrs
1	CHL	D	Fluorometrically derived C a
2	HPLC	D	HPLC-derived C a
3	AOT	D	Aerosol optical depths
4	А	D	Absorption coefficients
5	BB	D	Backscattering coefficients
6	KD	D	Diffuse downwelling attenuation coefficient
7	VERTICAL	1	Vertical measurement
8	DISCRETE	1	Discrete measurement
9	OBPG_PROC	Р	OBPG software: VSB, HyperInSpace
10	INT_CHL	Р	Depth integrated fluorometric Chl
11	INT_HPLC	Р	Depth integrated HPLC derived Chl
12	SHADE	Р	Instrument self shading correction applied
13	FQ	Р	f/Q correction applied to Lw
14	ES	Р	Es available from reference measurement
15	RRS	1	Lw estimated from Rrs
16	HYPER	1	Hyperspectral observation of Lw or Rrs
17	ABOVE_WATER	1	Above water radiometric observation
18	ALG_TRAIN_DATA	Р	Data point used in algorithm development

