

International Ocean Colour Science Meeting 2023

Advancing Global Ocean Colour Observations

Poster Session 3 Lightning Talks

Poster #44

NEW DATA AND FUNCTIONALITY OF THE NOAA OCEAN COLOR VIEWER (OCVIEW)

Karlis Mikelsons^{a,b} and Menghua Wang^a

^aNOAA/NESDIS Center for Satellite Applications & Research, College Park, MD, USA ^bGlobal Science and Technology, Inc, Greenbelt, Maryland, USA <u>www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html</u>

NEW DATA AND FUNCTIONALITY OF THE NOAA OCVIEW

www.star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html

Poster # 44

False color imagery

Clear sky imagery

New ocean color data products

A simulated PACE dataset to evaluate optical closure and phytoplankton community composition algorithms

Anna E. Windle^{1,2}, Ivona Cetinic^{1,3}, Cecile Rousseaux¹, Emerson Sirk^{1,2}, Amir Ibrahim¹, Lachlan McKinna^{1,4}, Jeremy Werdell¹

¹Ocean Ecology Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
 ²Science Systems and Applications, Inc., 10210 Greenbelt Road, Lanham, MD 20706 USA
 ³GESTAR II, Morgan State University, Baltimore, MD 21251 USA
 ⁴GO2Q, Sunshine Coast, QLD, Australia

Poster # 47

A simulated PACE dataset, in OCI orbit dimensions and geometries, to test and assess PACE retrieval algorithms.

Phytoplankton communities distribution along a physical gradient in the eastern Indian Ocean based on their pigment and absorption properties.

Chandanlal Parida & David Antoine

Remote Sensing and Satellite Research Group, School of Earth & Planetary Science, Curtin University, Perth, Australia

Australian Government

Australian Research Council

Spectral cluster analysis to the absorption of phytoplankton data analysis indicates the potential of the absorption spectra data for discriminating phytoplankton pigment and their position in the aquatic environments.

Spatial-temporal dynamics of phytoplankton functional types on the West Coast of Canada derived from hyperspectral remote sensing Reflectance

Vishnu Perumthuruthil Suseelan¹, Justin Del Bel Belluz², Hongyan Xi³, Midhun Shah Hussain⁴, Astrid Bracher³, Maycira Costa¹

¹SPECTRAL Remote Sensing Laboratory, University of Victoria, Victoria.

²Hakai Institute, Victoria, BC, Canada.

³Phyto-optics Group, Physical Oceanography of Polar Seas, Climate Sciences, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany.

⁴Dept of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, India.

2023 IOCS meeting, November 14-17, USA

Highly-resolved Diatom Concentration from Hyperspectral Rrs

- Highly-resolved diatom concentration for the first time across the optically complex Strait of Georgia.
- \succ Seasonal spring-bloom dominated by diatom was evident along the ferry track.
- \geq Diatom peaked during March with max conc reaches to 20 mg/m³.
- > Reduced Diatom concentration was observed towards the end of spring or summer.

GLIMR Hyperspectral Ocean Color from a New Vantage Point

Joseph Salisbury, Antonio Mannino

Maria Tzortziou & many more (GLIMR Team)

https://eos.unh.edu/glimr

Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR):

What is GLIMR?

It's NASA's newest Ocean Color instrument: A hyperspectral spectrometer in Geostationary orbit

Hyperspectral

- 340-1040 nm
- <10 nm resolution UV-Vis
- <5 nm sampling UV-Vis

High Temporal

- ~hourly scans of Gulf of Mexico (6x/day)
- 2x/day other regions
- 3x/day HAB target sites

High Spatial

- 300 m GSD nadir
- ~328 m Gulf of Mexico
- <500 m over coastal CONUS

High SNR

Requirements at Ocean Ltyp

- > 420, UV
- > 1000, 400-580 nm
- > 750, 580-650 nm
- > 580, 650-712 nm
- > 500*,* 713-880

Arun M. Saranathan^{1,2}, Nima Pahlevan^{1,2}, Mortimer Werther³, and Daniel Odermatt^{3,4} ¹GSFC-619.0, NASA Goddard Space Flight Center, Greenbelt 20771, MD, USA. ²Freshwater Sensing Program, Science Systems and Applications, Inc. (SSAI), Lanham 20706, MD, USA. ³Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.

eawag⁴Department of Geography, University of Zurich, Zürich 8057, Switzerland

PREDICTION PIPELINES FOR MDN & BNN-MCD

MODEL VALIDATION ON *IN SITU* GLORIA DATASET- MSI

PREDICTIONS FOR MSI IMAGE OF CHESAPEAKE BAY (October 17^{th,} 2020)

Deep learning for Environmental Ecological Prediction, eValuation, Insight with Ensembles of Water quality (DEEP-VIEW) for coastal applications

Stephanie Schollaert Uz¹, Troy J. Ames¹, J. Blake Clark^{1,2}, Dirk Aurin^{1,3}, Samantha Smith^{1,4}

 ¹NASA Goddard Space Flight Center, Earth Science Division, Greenbelt, Maryland
 ²University of Maryland Baltimore County, Baltimore, Maryland
 ³Morgan State University, Baltimore, Maryland
 ⁴Science Systems and Applications, Inc., Lanham, Maryland

Ensemble of generalized modules based on monitoring needs to exploit available satellite datasets

Water quality indicators, e.g. Kd, secchi depth, ecosystem health

Spectral feature unsupervised learning using autoencoder architecture on spectra, e.g. MODIS-Aqua: 2002-2021 Training with 50K cloud-free pixels

Trained encoder supervises decoder

Ocean Color Remote Sensing Insights into the Spatiotemporal Distribution of Surface Calanus finmarchicus in the Gulf of Maine

<u>Rebekah Shunmugapandi¹</u>, Cait McCarry² David McKee^{2,3}, Catherine Mitchell¹

¹Bigelow Laboratory of Ocean Sciences, East Boothbay, Maine, USA

²University of Strathclyde, Glasgow, UK

³University of the Arctic in Tromsø, Norway

Correspondence Email: rshunmugapandi@bigelow.org & cmitchell@bigelow.org

How ocean color remote sensing is used to detect surface Calanus distribution in the Gulf of Maine?

Calanus finmarchicus

Highlights

- The pigment astaxanthin in Calanus significantly affects reflective remote sensing signals when abundance is high.
- This study emphasizes the importance of understanding all of the significant contributions to ocean color remote sensing signals and highlights the potential of eRGB color matching methods for identifying the occurrence of high abundances of astaxanthin-rich/red species.

Spatiotemporal pattern of surface Calanus in the Gulf of Maine

VISUAL SEA3ASS 3 in-water AOP processing software

<u>Harrison Smith</u>^{1,2}, Violeta Sanjuan Calzado^{1,3}, Chris Proctor^{1,2}, Noah Vegh-Gaynor^{1,2}

¹NASA Goddard Space Flight Center [GSFC] ²Science Systems Applications Inc. [SSAI] ³University of Maryland Baltimore County [UMBC]

Inputs: SeaBASS files (Es, Ed, Lu) Outputs: Water-leaving radiances, K slopes, Uncertainties

Evaluation of EnMAP water reflectance product during the commissioning phase and first operational year

<u>M. A. Soppa</u>, M. Brell, S. Chabrillat, L. Alvarado, P. Gege, S. Plattner, I. Somlai-Schweiger, T. Schroeder, V. Brando, S. Colella, M. Bresciani, C. Giardino, Q. Vanhellemont, F. Steinmetz, D. Scheffler, M. Langheinrich, E. Carmon, M. Bachmann, M. Pato, T. Storch, A. Schickling, S. Fischer, A. Bracher

No. 67

Reconstructing hyper-spectral downwelling irradiance from multi-spectral measurements

Jing Tan¹, Robert Frouin¹, Nils Häentjens², Andrew Barnard³, Emmanuel Boss², Paul Chamberlain¹, Matt Mazloff¹ and Cristina Orrico⁴

¹Scripps Institution of oceanography, University of California San Diego, La Jolla, CA, United States

²School of Marine Sciences, University of Maine, Orono, ME, United States

³College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States

⁴Sea-Bird Scientific, Philomath, OR, United States

Merging satellite datasets to observe decadal trends in Cyanobacterial Index and turbidity products for Lake Okeechobee, FL, USA

Zack Wistort¹ and Tim Moore¹

1- FAU Harbor Branch Oceanographic Institute, Fort Pierce, FL

Algae bloom on Lake Okeechobee, central Florida, 8/21/2005. Image taken by Landsat 5 (USGS).

FLORIDA ATLANTIC UNIVERSITY°

Is there a reliable proxy to extend the Lake Okeechobee CI timeseries using Landsat 5 imagery?

Cyanobacterial Index

Landsat 5 (TM)

Envisat (MERIS)

8/21/2005

8/22/2005

8/22/2005

Adjacency-effect correction in remote sensing of coastal and inland waters for Sentinel-2 MSI and Landsat-8 OLI imagery

<u>Yulun Wu¹</u>, Anders Knudby¹, Nima Pahlevan^{2,3}, David Lapen⁴, Chuiqing Zeng⁵, Christopher Begeman^{2,3}

¹Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, ON, Canada ²Science Systems and Applications Inc., Lanham, MD, USA

³NASA Goddard Space Flight Center, Greenbelt, MD, USA

⁴Ottawa Research Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada ⁵Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON, Canada

Advancing Global Ocean Colour Observations

Methodology

Steps:

- 1. Calculate the Point Spread Function (PSF)
- 2. Convolve TOA reflectance with the PSF
- 3. Estimate and correct for the AE from the difference between observed and convolved TOA reflectance

Code and instruction: https://github.com/yulunwu8/tmart

Case Study: Lakes in Minnesota

Algorithm: Nechad et al. 2010

Hyperspectral optimization for optically shallow water retrievals: application to HICO and implications for the PACE mission

Yuyuan Xie (yuyuan@usf.edu), Brian B. Barnes, Chuanmin Hu College of Marine Science, University of South Florida

Mapping depths

This study

Next year

Derived Original resolution

Depth (m)

I

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Application of Dove/SuperDove imagery in monitoring Harmful Algal Blooms in nearshore and inland waters

Yao Yao¹, Chuanmin Hu^{1*}, Jennifer P. Cannizzaro¹, Brian B. Barnes¹, Yuyuan Xie¹ 1 College of Marine Science, University of South Florida Corresponding to: huc@usf.edu

Poster No. 74, Session 3

HABs - red tide

Karenia brevis
cell counts (cells/L)
± 7 days
0 − 1,000
1,001 − 10,000
10,001 − 100,000
100,001 − 1,000,000
Above 1,000,000

2 km

HABs - red tide

Hypoxia forecasting for Chesapeake Bay using artificial intelligence

Guangming Zheng ^{1,2} and Stephanie Schollaert Uz ³, Marjorie Friedrichs ⁴, Pierre St-Laurent ⁴, Amita Mehta ⁵, Paul M. DiGiacomo ¹

¹ NOAA/NESDIS/Center for Satellite Applications and Research, 5830 University Research Court, College Park, MD 20740 ² Cooperative Institute for Satellite Earth System Studies, Earth System Science Interdisciplinary Center, University of Maryland College Park, 5825 University Research Court, College Park, MD 20740

³ Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771

⁴ Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062

⁵ NASA Goddard Earth Sciences Technology and Research, University of Maryland Baltimore County, Baltimore, MD 21250

A Low-Cost Spectroradiometer System for Measuring the Radiometric Properties and Color of Natural Waters

Richard C. Zimmerman¹, Chandler Slater¹, Jason Boynewicz³, Victoria J. Hill¹, Charles I. Sukenik²

¹Department of Ocean & Earth Sciences, Old Dominion University, Norfolk VA ²Physics Department, Old Dominion University, Norfolk, VA ³Department of Physics, University of Texas, Austin, TX

*E*_d @ 0.5 m depth

