

International Ocean Colour Science Meeting 2023

Advancing Global Ocean Colour Observations

Poster Session 6 Lightning Talks

Contrasting suspended particle characteristics and optical properties in two estuaries in the northern Gulf of Mexico: Seasonal trends

Eurico D'Sa, Louisiana State University

Ishan Joshi, Scripps Institution of Oceanography

Bingqing Liu, University of Louisiana, Lafayette

IOCS, 14-17 Nov. 2023

Seasonal variability SPM in two estuaries in northern GoM

Identification of the Spectral Pattern of Brown Algae in the southern area of Perú

Luis Escudero¹, Carlos Paulino¹, German Velaochaga¹, Jaime Atiquipa¹, Han Xu¹ & Edward Alburqueque¹

¹ Remote Sensing Laboratory, Instituto del Mar del Perú

STUDY AREA

SPECTRAL EQUIPMENT

Brown algae distribution

Sunglint mitigation strategy for upcoming multidisciplinary remote-sensing missions

Poster Number - 136

Sakib Kabir^{1,2}(sakib.kabir@nasa.gov); Nima Pahlevan^{1,2}; Peng-Wang Zhai³; Akash Ashapure^{1,2}

¹Science Systems and Applications Inc.(SSAI)

²NASA Goddard Space Flight Center (GSFC)

³Department of Physics, University of Maryland Baltimore County

Date: 11/17/2023

Sunglint Mitigation Strategy

--- R_{m1}

500 550 600 650 700 750

Wavelength (nm)

0.0025

- 0.0020 2 0.0015 0.0010

Results

Conclusion:

• >15° tilt will diminish sunglint substantially for the summer observations, whereas $\geq 12^{\circ}$ will be required for the fall and winter observations.

Sea ice detection using GOCI-II (Geostationary Ocean Color Imager – II)

Kwangseok Kim¹, Min-Kyu Kim¹, Young-Je Park^{1*}

¹Korea Ocean Satellite Center/KIOST

$\begin{aligned} Accuracy &= \frac{(TP+TN)}{(TP+TN+FN+FP)} \\ \text{Precision} &= \frac{TP}{(TP+FP)} \end{aligned}$	$\begin{aligned} Recall &= \frac{TP}{(TP+FN)} \\ P1score &= \frac{2 \times Recall \times Precision}{Recall + Precision} \end{aligned}$	Actual	
		Positive	Negative
Predicted	Positive	TP	FP
	Negative	FN	TN

Bio-optical feedback as a mechanism for stability of primary production in the mixed layer

Žarko Kovač^{1*}, Shubha Sathyendranath²

¹ Faculty of Science, University of Split, Rudera Boškovića 33, 21 000 Split, Croatia *zkovac@pmfst.hr
² Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, United Kingdom

International Ocean Colour Science Meeting, St. Petersburg, FL, USA, 14-17 November 2023

Uncertainty Estimates for Satellite-based Computations of Marine Primary Production

Gemma Kulk, Shubha Sathyendranath, James Dingle, Thomas Jackson

141

·eesa

Address uncertainty in satellite-based primary production to improve confidence in products

by following the Guide to expression of Uncertainty in Measurement (GUM):

Formulate primary production model $P = f(P_m^B, B, D, K, I) = \frac{P_m^B B D}{K} f(I_*^m)$

Determine standard error of the mean in model inputs

3 Propagate errors to evaluate combined uncertainty

Deep neural networks-based derivation of ocean-color products

Hyeong-Tak Lee, Hee-Jeong Han, Young-Je Park Korea Ocean Satellite Center Korea Institute of Ocean Science & Technology

Estimation of microphytobenthos biomass using *in situ* and airborne Watersat Imaging Spectrometer Experiment (WISE) hyperspectral imagery

<u>B. Légaré</u>^{1,2}, S. Mukherjee^{1,2}, C. Nozais^{1,2}, S. Bélanger^{1,2}

¹ Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Québec, Canada

² Québec-Océan, Pavillon de Alexandre-Vachon, Université Laval, Québec, Canada

Poster 144

The microphytobenthos plays a crucial role in primary production within coastal ecosystems

.....

0.35

0.3

0.25

C.0 Reflectance

0.1

0.05

0

520

In Situ spectra - MSC corrected
 WISE images - SABER corrected

640

760

Tracey Saxby, Integration and Application Network (ian.umces.edu/media-library)

Poster # 145

Global daily gap-free ocean color products derived from multi-satellite measurements using the DINEOF method

<u>Xiaoming Liu¹ and Menghua Wang²</u>

¹Xiaoming.Liu@noaa.gov

NOAA National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, 5830 University Research Court, College Park, MD 20746, USA

CIRA at Colorado State University, Fort Collins, CO 80523, USA

²Menghua.Wang@noaa.gov

NOAA National Environmental Satellite, Data, and Information Service, Center for Satellite Applications and Research, 5830 University Research Court, College Park, MD 20746, USA

Three-sensor (VIIRS SNPP, NOAA-20, & OLCI-S3A) merged Chl-a image, 1/11/2019

Global daily gap-free image, 1/11/2019

Chl-a (mg m-3)

Gap-free images of different spatial resolutions

The importance of temporal variability or seasonality in the relationship between Line Height Absorption and chlorophyll concentration: a case study from the Northern Gulf of Alaska.

<u>Benjamin Lowin¹</u>, Suzanne Strom², Will Burt³, Thomas Kelly⁴ and Sara Rivero-Calle¹

1- Skidaway Institute of Oceanography and Department of Marine Sciences, University of Georgia

- 2- Shannon Point Marine Center, Western Washington University
- 3 -Planetary Technologies, Halifax, Canada
- 4 -College of Fisheries and Ocean Sciences. University of Alaska Fairbanks

Using Ocean Color Data for Estimation of Spatiotemporal Biogeochemical Model Parameters

Nabir Mamnun¹, Christoph Völker^{2,3}, Mihalis Vrekoussis¹, Lars Nerger¹

¹Alfred-Wegener-Institut (AWI), Helmholtz Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany ²Institute of Environmental Physics (IUP), University of Bremen, Germany

³Center of Marine Environmental Sciences (MARUM), University of Bremen, Germany

Estimated parameters values for (A) Initial slope of the Photosynthesis-irradiance curve; (B) Maximum photosynthesis rate and (C) Maximum chlorophyll to nitrogen ratio of nanophytoplankton

Comparison of surface chlorophyll-a concentration from model simulations with default parameters and estimated parameters against satellite observations for the period 2019-2021.

Poster 150

Recent advances on S3/OLCI Ocean Colour Standard Atmospheric Correction (OC-SAC)

C. Mazeran¹, M. Compiègne², M. Moulana², D. Ramon², F. Steinmetz², R. Frouin³, D. Dessailly⁴, J. I. Gossn⁴, E. Kwiatkowska⁴

Study funded by EUMETSAT contract EUM/CO/21/4600002533/DD

Poster 150 - Ocean Colour Standard Atmospheric Correction (OC-SAC)

- RTM in spherical shell
- LUT grid optimization
- Multiband aerosol detection
- Uncertainty estimates

- ALH with O₂-absorption bands
- Strongly absorbing models: extension of Ahmad et al. (2010) & multiband detection in VIS
- Validation against MOBY, AERONET, AERONET-OC
- Future: collaborate & validate OC-SAC with your in-situ data?

Deep learning for remote sensing-based estimation of water quality parameters

Poster Number: 158

Dinesh Neupane¹, Stephanie Rogers² ^{1,2} Department of Geosciences, Auburn University, AL

Predicted water quality maps

Examining the OLCI 709 nm Water Vapor Correction on Chlorophyll Algorithms Rick Stumpf, NOAA, Silver Spring, MD, USA Andrew Meredith, CSS, Charleston, SC, USA

Friday session 6 #163

NOAP

Data derived from Copernicus Sentinel-3

SeaDAS water vapor correction is good but too strong, we propose adjustment

Friday session 6 #163 Stumpf & Meredith

State Key Laboratory of Marine Environmental Science (Xiamen University)

International Ocean Colour Science Meeting 2023

Important contributions of water-leaving irradiance to the parametrization of ocean surface albedo

Xiaolong Yu¹, Zhongping Lee¹, Shaoling Shang¹, Menghua Wang², Lide Jiang²

¹ State Key Laboratory of Marine Environmental Science, Xiamen University ² NOAA Center for Satellite Applications and Research, College Park, MD 20740, USA

Refs: Yu et al. 2022, Remote Sens. Environ.; Yu and Lee, 2022, Opt. Express

Estimating pixel-level uncertainty in MODIS R_{rs} retrievals

Minwei Zhang^{1, 2}, Amir Ibrahim², Bryan A. Franz², Andrew M. Sayer^{2, 3}, P. Jeremy Werdell², and Lachlan I. McKinna^{4, 2}

¹Science Application International Corp., McLean, VA, United States

²Ocean Ecology Laboratory, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, MD, United States

³GESTAR II, University of Maryland Baltimore County, Baltimore, MD, United States ⁴Go2Q Pty Ltd., Buderim, QLD, Australia

