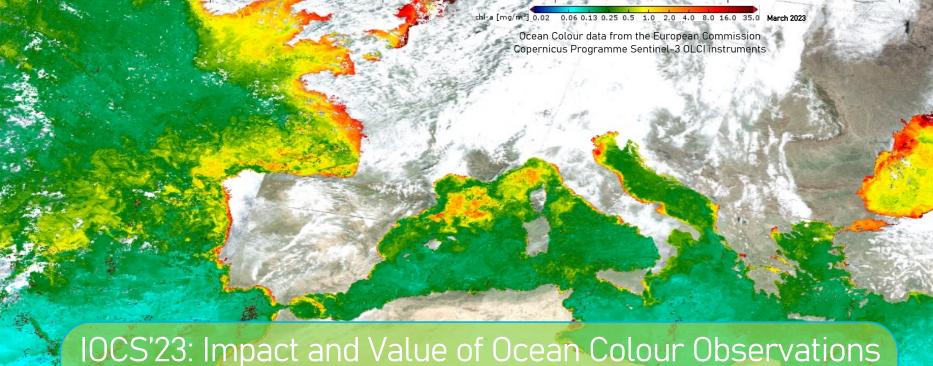
EUMETSAT

PROGRAMME OF THE EUROPEAN UNION

EUMETSAT Ocean Colour products and services: status and outlook


Juan Ignacio Gossn EUMETSAT

IOCS meeting, 16 November 2023

EUM/RSP/DOC/23/1384599, v1 Draft, 1 November 2023

Ocean Colour: observing the living aquatic ecosystems

IOCS'23: Impact and Value of Ocean Colour Observations in a Changing World: Water in all its Colours

Carbon/Climate

"Healthy oceans and coastal ecosystems are crucial for economic growth and food production, but they are also essential contributors to global efforts to mitigate climate change." The World Bank, Blue Economy, 2022

Marine resources

Water Quality

Biodiversity

Ecosystem services

EUMETSAT: delivering quality Ocean Colour data services to users

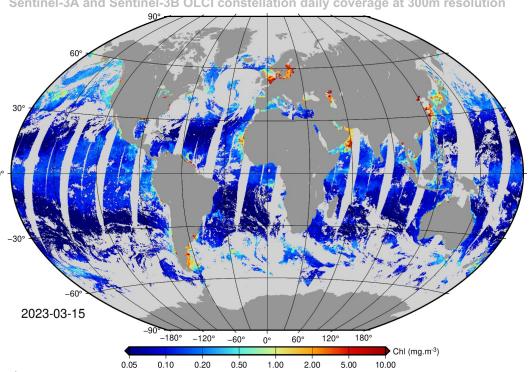
Sentinel-3 OLCI Collection-3 currently in operations

- v. 3.00 since 16 Feb 2021
- v. 3.01 since 28 Apr 2021 two minor updates
- v. 3.02 since 19 Apr 2022 new processor naming

Collection-3 summary

- High consistency between OLCI-A and OLCI-B
- Open water chlorophyll within mission requirements
- Improved product retrievals over turbid waters
- Reduced «salt and pepper» noise in products

Collection-3 documentation online


- Collection-3 Report: https://www.eumetsat.int/media/47794
- Ocean Colour Services page: https://www.eumetsat.int/ocean-colour-services

Collection-3 user validation and recommendations

- Many validation collaborations and peer-reviewed publications
 - Sentinel-3 Validation Team-OC (S3VT-OC)
 - OC-TAC Copernicus Marine Environment Monitoring Service (CMEMS)
 - Sentinel-3 OLCI/SYNERGY Quality Working Group

Data access via EUMETSAT Data Store

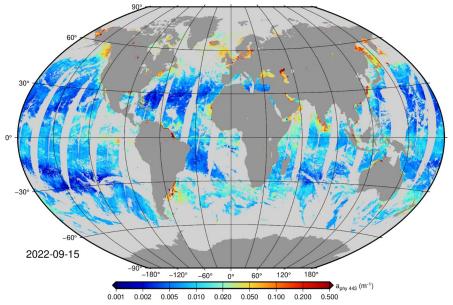
https://data.eumetsat.int

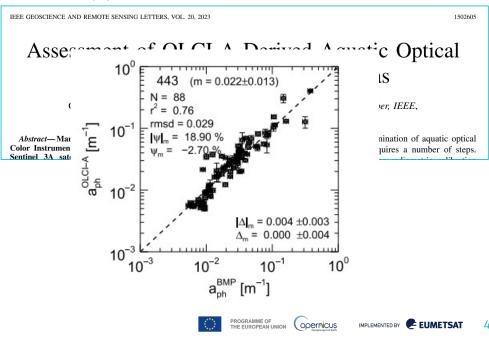
copernicus.eumetsat.int

https://www.eumetsat.int/ocean-colour-services

Sentinel-3A and Sentinel-3B OLCI constellation daily coverage at 300m resolution

New OLCI IOP products in operations from January 2024, v. 3.04


New OLCI IOP products


- $a_{nw}(\lambda), b_{bp}(\lambda), a_{phy}(\lambda), a_{cdm}(\lambda), a_{cdom}(\lambda), K_d(\lambda), b_{bp}$ spectral slope, optical water class
- a and b_{bp} are at 442.5 nm and K_d is at 490 nm
- Description: https://www.eumetsat.int/S3-OLCI-IOP
- SNAP toolbox: http://s3vt.skytek.com/group/s3vt-oc/home
- CONSULT [•] Gitlab source code available to produce IOPs at all OLCI spectral bands: https://gitlab.eumetsat.int/eumetlab/oceans/ocean-science-studies/olci-iop-processor

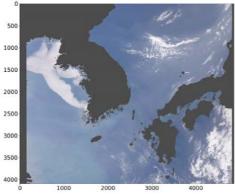
Jorge et al., 2021 RSE IOP Bonelli et al., 2021 RSE CDOM

EUM/RSP/D0C/23/1384599. v1 Draft. 1 November 2023

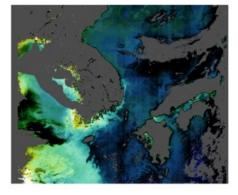
copernicus.eumetsat.int

https://www.eumetsat.int/S3-OLCI-IOP

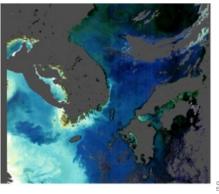
Redevelopment of the Atmospheric Correction


Redevelopment of Standard Atmospheric Correction (OC-SAC)

- Atmosphere Spherical Shell modelling of the molecular Rayleigh scattering
- Aerosol standard models from Ahmad et al., 2010, with continuous discretization
- Extension of standard aerosol models to stronger absorbing models with increased refractive index
- Radiative Transfer Modelling at detector wavelength, no smile correction
- Aerosol detection with 6 NIR bands (instead of 2), and uncertainty estimates
- Aerosol vertical profile, through a rough estimate of aerosol layer height with O₂-absorption bands


Development of Alternative Spectral-Matching Atmospheric Correction (SACSO)

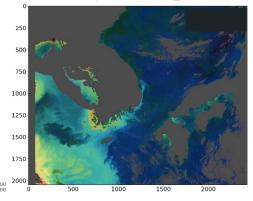
- Development based on the POLYMER iterative spectral optimisation using the full solar spectrum
- Multiple scattering approximation to model the aerosol reflectance
- New inversion method to improve the stability of the algorithm



RGB composite of rho_w Collection-3

RGB composite of rho_w OC-SAC

https://www.eumetsat.int/oc-sac See poster **nº 150** by Constant


Mazeran

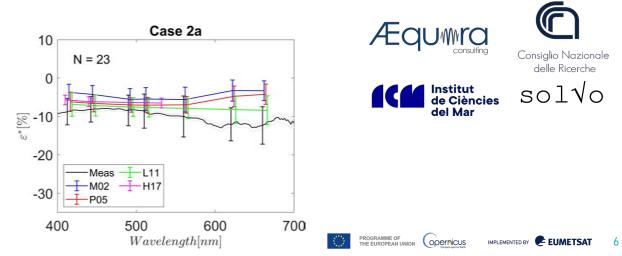
copernicus.eumetsat.int

https://www.eumetsat.int/SACSO

RGB composite of rho_w SACSO

Validations and development of the BRDF correction

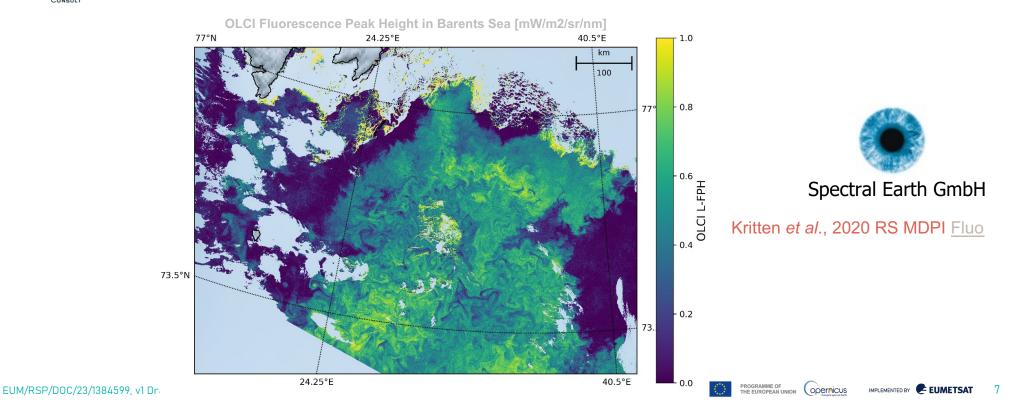
BRDF corrections tested and validated


- Morel *et al.*, 2002 → M02
- Park and Ruddick, 2005 \rightarrow P05
- Lee et al., 2011 \rightarrow L11
- He *et al.*, 2017 → H17
- Twardowski and Tonizzo, 2018 → T18

BRDF extension to improve the accuracy and expand the validity range

- RT simulations for realistic water combinations using a dataset especially developed for the study
- IOPs retrieval based on QAA V6 reference design
- BRDF correction LUT based on L11 reference design
- Reversibility of the BRDF correction scheme and provision of uncertainties

EUM/RSP/D0C/23/1384599, v1 Draft, 1 November 2023


https://www.eumetsat.int/brdf-correction-s3-olci-water-reflectance-products

copernicus.eumetsat.int

Development of OLCI Fluorescence product

OLCI Fluorescence product

- TOA-radiance Fluorescence Peak Height
- Description: https://www.eumetsat.int/S3-OLCI-FLUO
- BROCKMANN SNAP plugin: http://s3vt.skytek.com/group/s3vt-oc/home

copernicus.eumetsat.int https://www.eumetsat.int/S3-OLCI-FLUO

Meeting registration now closed but new teams welcome to join S3VT

copernicus.eumetsat.int

SENTINEL-3 VALIDATION TEAM MEETING 5-7 DECEMBER 2023 DARMSTADT, GERMANY

EUM/RSP/D0C/23/1384599, v1 Draft, 1 November 2023

(opernicus

8

Developments towards OLCI Collection-4 and beyond

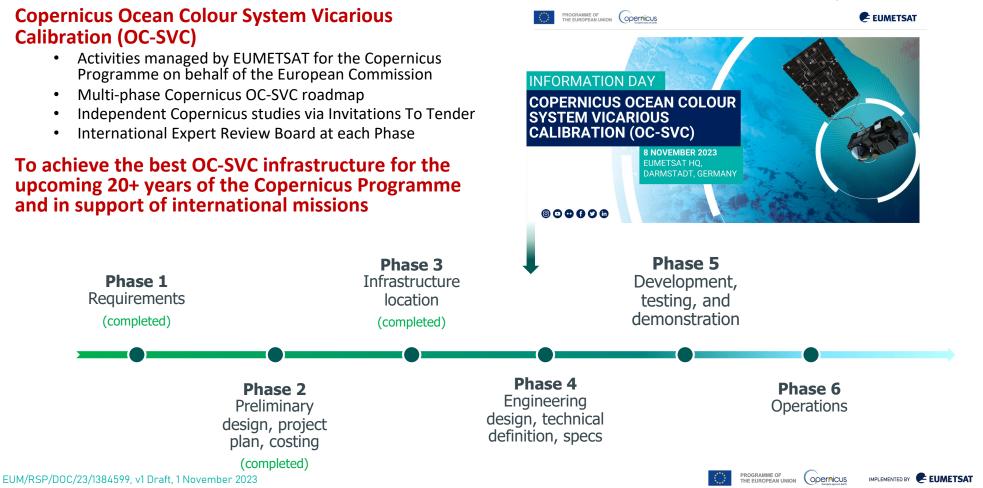
OLCI Collection-4

- Redeveloped Standard Atmospheric Correction (OC-SAC)
- BRDF correction
- Fluorescence new product
- PAR: daily planar PAR above water + uncertainty, instantaneous planar PAR above water, daily scalar PAR under water
- High Chlorophyll retrieval improvements
- Cloud shadow and turbid water flags

Community collaboration on algorithm validations is welcome, please get in touch with us

Tentatively in operations in Fall 2024, together with a full mission reprocessing

Further developments ongoing considering Sentinel-3C,-3D, and Next Generation Optical missions


EUM/RSP/D0C/23/1384599, v1 Draft, 1 November 2023

PROGRAMME OF THE EUROPEAN UNION IMPLEMENTED BY 🗲 EUMETSAT

Towards Copernicus System Vicarious Calibration infrastructure

copernicus.eumetsat.int https://www.eumetsat.int/OC-SVC

10

Fiducial Reference Measurements for validation – FRM4S0C2

Fiducial Reference Measurements for Satellite Ocean Colour

- Phase 1 coordinated by ESA, https://frm4soc.org
- Phase 2 funded by the EC Copernicus Programme and coordinated by EUMETSAT, https://frm4soc2.eumetsat.int

To provide to the Community easy procedures, guidelines and tools for collecting FRMquality radiometric measurements

9. Review and test the developed procedures, guidelines and tools: a field experiment, an international workshop, Expert Review Board

7. Develop a complete end-to-end uncertainty budget, include the uncertainty calculations in the community processor

6. Develop a community processor for in situ radiometric measurements, cooperate with NASA *et al.* on HyperCP

ROGRAMME OF

ACRI

PML Plymouth Marin

 Initially focus on the two most common Ocean Colour hyperspectral radiometer classes

5. Provide prescriptive and detailed FRM in situ measurement procedures (following from the IOCCG protocols and RRM4SOC-1experience)

2. Fully characterise the two Ocean Colour

radiometer classes

NASA

onsiglio Nazionale delle Ricerche

BROCKMANN Consult GmbH

museum

(issue recommendations to instrument manufacturers)

Parameter	Scope	Before initial use	Re-cal/char	D-a requirement
1. Absolute calibration for radiometric responsivity	Individual	required	a year	183
2. Long term stability	individual	required	after every calibration	181
3. Stray light and out of band response	individual.	required	5 - 5 years	Ra
4. Immension factor (irradiance)	lasbivibni	required for ander-water	after feee-optics modification	
ab Immersion factor (radiance)	indvidual/class-specific	required for under-water	after fore-optics modification	
5. Augular response of irradiance sensors in air	Individual	regaired	after feet-optics modification	IR3
6. Response angle (FOV) of radiance sensors in alr	class-specific	recommended	after fore-optics modification	
5. Non-Amerity	elan-specific	resonances ded	after repair is workshop	32.4
8. Accuracy of integration times	ekon-specific	bebreauxon.	after ripair is workshop.	18.4
9. Dark signal	Individual	required	1 year	18.7
so. Thermal responsivity	class-specific	recommended	after repair is weekshop-	DRS
II. Polarisation sensitivity	class-specific	remanded	after repair is workshop	305
12. Temporal response	TID	TID	TRD	IR4
13. Wavelength scale	elass-specific	recommended	after fore-optics modification	309
15. Signal-to-noise ratio	individual	bebrymmeson	Lywar	
ef. Pressare effects	770	TRO	dit	

3. Provide community guidelines on radiometer cal/char schedules

 Develop radiometer cal/char guidelines for laboratories, include an international lab inter-comparison exercise

copernicus.eumetsat.int

https://frm4soc2.eumetsat.int

Training on above-water radiometry at Acqua Alta Oceanographic Tower

copernicus.eumetsat.int

12

FRM4SOC Phase-2

Home About Team Events Documents Contact

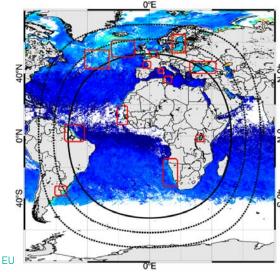
PROGRAMME OF THE EUROPEAN UNION OPERATION

fiducial reference measurements for satellite ocean colour

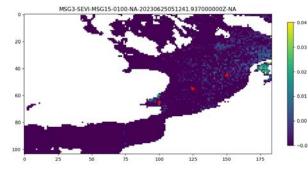
EUM/RSP/D0C/23/1384599, v1 Draft, 1 November 2023

Geostationary Ocean Colour developments

Development of Ocean Colour demonstration products from geostationary Meteosat SEVIRI and FCI instruments


- Prototyping of water quality products such as Turbidity, Suspended Particulate Matter, Secchi Depth, and Chlorophyll (from FCI only)
- Investigating different Atmospheric Correction approaches: Standard, Alternative • spectral-matching (for FCI only), and Neukermans et al., 2012, 2009

GEO-OC Project User Consultation Workshop, 7 – 8 December, 2023 at EUMETSAT headquarters and online, open for registration



Locations of diagnostic datasets for validation


Meteosat Second Generation SEVIRI rho w(600nm)

Meteosat Third Generation FCI disk coverage every 10 min at 1 km resolution

BROCKMANN

CONSULT GMBH

PROGRAMME OF THE EUROPEAN UNION (opernicus

13

copernicus.eumetsat.int https://www.eumetsat.int/OC-GEO