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OCI is complete and installed on the Spacecraft
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• Arrived Tuesday in Cape Canaveral, FL, for a 
launch early 2024
• Global hyperspectral imager, 315nm-2260nm
• Tilt once an orbit to avoid sun glint
• On-orbit calibration via:

- 2 bright solar diffusers
- 1 dim solar diffuser
- lunar irradiance
- spectral mode at 0.625nm sampling
- solar ‘pulse’ for SWIR hysteresis monitoring



OCI Hardware (from U. Gliese, IGARSS 2023)
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OPTICAL AND DETECTOR DESIGN OF THE OCEAN COLOR INSTRUMENT FOR THE NASA PACE MISSION

PACE
OCI

Fiber-Coupled 7-Band SWIR Detection System

Hyperspectral UVNIR Detection System

Hyperspectral Optical System



OCI image acquisition

• OCI is a rotating scanner, similar to SeaWiFS and VIIRS (rotating 
telescope and half angle mirror); rotation rate is 5.7Hz
• Image is acquired via motion of spacecraft in earth view mode (see 

picture below)
• Image is acquired via rotation of the spacecraft for lunar 

measurements
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Image from U. Gliese,
IGARSS 2023. See backup
for full citations.



OCI description: optical path

Further, OCI provides 7 discrete bands in the 940-2260 nm 
wavelength range. In comparison, previous ocean imagers 
[1,3] such as SeaWiFS [4], VIIRS [5] and MODIS [6] have 
only provided discrete bands. 
 
OCI employs a rotating front-end imager, two back-end slit-
grating spectrographs and two Charge-Coupled Device 
(CCD) Time Delay Integration (TDI) cameras for the 
322-887 nm wavelength range. The front-end imager creates 
an image of the ground scene at the input slit of the back-end 
spectrograph. The slit-image is re-imaged and dispersed 
onto the CCDs with 5 nm resolution over the entire 
322-887 nm wavelength range. The rotating imager together 
with on-chip TDI in the CCDs are used to simultaneously 
achieve the critical requirements of high SNR and low image 
striping artifacts. It enables increased photon collection for 
each spatial ground scene leading to increased SNR. In 
addition, it creates spatial images at each wavelength using a 
single virtual detector thereby avoiding most spatial striping 
artifacts. For this to work, a high precision rotating optical 
system has been designed to achieve the required 
synchronization between the ground scene and charge 
movement at the CCD surface. 
 
With its hyperspectral capability and high performance, OCI 
provides a significant technological advancement enabling 
quantitative evaluation of separate plankton species from

space for the first time. This high-performance hyperspectral 
capability is expected to also find other beneficial scientific 
uses. To achieve the performance, OCI is designed with 
specialized optical imaging and opto-electronic detection 
systems that push the boundaries of several state-of-the-art 
optical and opto-electronic technologies. The performance 
and unique design challenges of the optical imaging and 
opto-electronic detection systems are presented in this paper. 
 

2. OPTICAL IMAGING SYSTEM 
 
The OCI optical imaging system is shown in Fig. 1. The 
322-2260 nm front-end optical imager is a rotating mirror-
based system that images the ground scene onto a slit with 
an Instantaneous Field Of View (IFOV) of 16 km x 1 km. 
The scan-rate is 5.77 Hz and the IFOV is scanned over an 
angular range of ±56.6° for a ground swath-width of 
2663 km. Further, it includes a depolarizer to ensure a low 
polarization sensitivity of less than 1 %. The image rays are 
reflected of a Half Angle Mirror (HAM), spinning at 
2.885 Hz, onto the slit to ensure the scanned IFOV is always 
aligned to the slit. The back-end optical spectrograph 
consists of two slit-grating spectrographs for the 322-607 nm 
and 597-887 nm wavelength ranges, and a fiber-coupled 
filter-bank spectrograph for the 940-2260 nm wavelength 
range. The three ranges are separated using dichroic beam-
splitters in collimated space. 
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Fig. 1: Optical imaging system. 
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SWIR bands

Picture from:
Gliese et al., Optical and
Detector Design of the 
Ocean Color Instrument
for the NASA PACE 
Mission, IGARSS 2023,
Pasadena, CA.



Solar Diffuser

• Daily/monthly for short/medium term (up to 2 years) tracking of 
radiometric gain changes
• 3 diffusers (2 bright, one dim for linearity) mounted on

a 3-sided wheel, see picture 
• Long term tracking via lunar irradiance measurements
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Lunar measurements

• OCI will measure lunar irradiance twice a month, at +/- 7deg phase 
angle during the dark side of the orbit via a pitch/slew/roll maneuver
• OCI LOS will be steered a few degree below the moon, slowly sweep 

across the moon, stop, and slowly sweep back
• Sweep speed will be highly controlled (oversampling factor of 4)

• Additionally, OCI will move its LOS to the center of the moon and 
stare for ~30 seconds to acquire a scan line with a high contrast signal 
for SWIR band characterization 
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• Ground Sampling Distance (GSD) along scan/track: 0.0888deg/0.0881 
deg (distance between pixel centers)
•  Instantaneous Field of View (IFoV) along scan/track: 

0.0889deg/0.0929deg (area imaged by a pixel) 
•  Effective spatial resolution for PACE orbit including 20deg tilt at 

‘nadir’: 1.2km (similar to SeaWiFS, larger than MODIS (1km))
• Field of Regard (FoR) : - 56.0deg to +56.5deg 
• Swath width on the ground: ~2700km
• 2-day global coverage (almost daily global coverage)
• Tilt (-19.9deg and +19.9deg) will be staggered (like SeaWiFS)

OCI Spatial Performance (GSD, IFOV, FoR)
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Slide from G. Meister,
IGARSS 2023. See backup for full citation.



OCI Tilting on Spacecraft +/-20deg
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OCI Tilting on Spacecraft (from J. Knuble, IGARSS 2023)



GLAMR Test Video
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GLAMR Test Video (from J. Knuble et al., IGARSS 2023)



Hyperspectral bands: spectral coverage
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• Blue FPA baseline aggregation: 119 L1B bands from 

314.9nm to 605.7nm 

- 116 L2 bands up to 598.3nm

- Bands below 340nm have reduced radiometric 

accuracy (TBD on-orbit)

- Bandwidth: ~5.1nm

• Red FPA baseline aggregation: 163 L1B bands from 

600.5nm to 894.6nm, bandwidth ~5.0nm

• 9 SWIR bands at 7 wavelengths from 940nm to 

2260nm

• See following presentation for details on SWIR 

bands, bandwidth, out-of-band, etc.
Slide from G. Meister,
IGARSS 2023. 
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‘Ghosts’ in blue spectrograph

• Identified as reflections of various
optical surfaces via raytracing model

• We derived a model based on
measurements

• Animation shows modelled crosstalk from +/-15 1km pixels (x-axis) and sender wavelengths (y-axis) into 
receiving band (function of time)  

• We have derived a correction that removes the ghosts (two ‘walls’ in picture on the right) and along-scan 
and spectral straylight (remaining features in picture on the right). No correction is applied for adjacent 
1km pixels or adjacent 5nm bands.

• Along-track straylight is smaller (limited by telescope aperture) than along-scan and not corrected for. 

Covered in Shihyan’s presentation 

Slide from G. Meister,
IGARSS 2023. 
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• More RSR variation (electronic crosstalk) on red FPA, but at very low level (often negative)
• Decline from peak to <1e-3 much faster than in blue FPA
• Ghosts much smaller than in blue FPA

OCI relative spectral response: blue and red FPA

Slide from G. Meister,
IGARSS 2023. 
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 Solid lines – Fit to data; Dashed vertical lines – TOA radiance levels (from requirements)
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SNR at LTYP for multispectral bands

Comparison of different SNR estimates over TVAC tests (HAM A shown; HAM B is consistent).
  All multispectral and SWIR bands well above the baseline requirement.
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SNR at LTYP for hyperspectral bands

Comparison of different SNR estimates over TVAC tests (HAM A shown; HAM B is consistent).
 Very high SNR even for hyperspectral bands (spectral aggregation needed above 800nm).

Blue FPA Red FPA

Slide from G. Meister,
IGARSS 2023. 



Lt = K1*K2(t)*(1-K3(T-Tref))*K4(θ) *K5(dn)*Kp*dn

• Lt = Radiance, unit: W /( m2 μm sr)
• K1 = absolute gain factor; unit: (W /(m2 μm sr))/dn 
• K2(t) = relative gain factor as a function of time t; unitless 
• K3 = temperature correction [(deg C)-1] (vector)
• T = Temperatures measured at relevant locations [deg C] (vector)
• Tref =  Reference Temperature [deg C]
• θ =scan angle [deg] 
• K4 = (θ) response versus scan ; unitless
• K5 = nonlinearity factor ; unitless
• dn = dark-corrected instrument counts
Kp: polarization correction applied in Level-2 code (correction needs TOA radiance polarization information)

        K1, Kp and K3-K5 have been derived for all bands 
          - K2 will be derived on-orbit from solar diffuser and lunar measurements

 17

Radiance Calibration Equation

Slide from G. Meister,
IGARSS 2023. 
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K3: Temperature dependence
Temperature dependence measured during TVAC testing with white light source:
  - variation dominated by detector (FPA) temperature (see e.g. 410nm example below)
  - impact of main optical bench (MOB) is minor, no impact from Data Acquisition Unit (DAU)
  - very small (unexpected) variation detected with mirror side for red FPA (<0.02%/deg)
Temperature dependence measured during TVAC testing with monochromatic light source:
  - 0.02nm/deg wavelength shift (negligible, not corrected) for red FPA



SWIR RVS

3D view of RVS vs MLA position (reflective on left; transmissive on right)
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Reflective Transmissive
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K4: Response Versus Scan Angle (RVS)
Instrument response to constant radiance measured at different scan angles
  - variation below 900nm agrees well with model predictions, symmetric around nadir
  - RVS  in the SWIR bands increases linearly with scan angle (this was unexpected)
  - Ray trace model suggests fiber alignment as a possible reason 

Blue FPA SWIR

Fit vs Scan Angle

Variation of the RVS over bands (blue FPA)
Here RVS is normalized to 0 degrees scan angle.
RVS shape varies across focal plane.

13

Covered in Jeff’s presentation 

Slide from G. Meister,
IGARSS 2023. 
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K5: Linearity
Comparison of white light progressive time-delay integration (PTDI) and GLAMR power stepping
  Generally results are comparable for Red and Blue FPAs
  No PTDI for SWIR bands – GLAMR data used

Slide from G. Meister,
IGARSS 2023. 
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Kp: Polarization Sensitivity
Polarization amplitude measured at different scan angles
  Amplitude generally less than 0.4 % except in UV (below about 350 nm)
  Oscillations in red FPA a feature of the depolarizer
  Phase angle also determined – Mueller matrix components derived from amplitude and phase

Blue FPA Red FPA SWIR

Slide from G. Meister,
IGARSS 2023. 
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Saturation

- Saturation  above LMAX (or LCLIP) for most bands, indicating expected science data range to be met.
- Some bands saturate a little early in blue FPA; this was expected. 
- Reduced dynamic range from 660nm-715nm to increase SNR for FLH product (and at 1038nm for atm. cor.). 

Blue FPA Red FPA SWIR

Slide from G. Meister,
IGARSS 2023. 
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SWIR band hysteresis

• Due to SWIR band detector and electronics characteristics, significant hysteresis is  observed 
after a strong radiance gradient (e.g. cloud/ocean boundary)

• We developed a correction for ETU that reduces the impact to within the noise 3 pixels after the 
radiance transition (see below for example; red line is 1km x1km stimulus)

• Effect is expected to be linear and to follow the superposition principle, so we expect good 
performance of the flight unit correction with real on-orbit data

Hysteresis will be 
monitored on-orbit via 
lunar measurements 
(stare mode) and a 
dedicated on-board 
device (SPCA: Solar 
Pulse calibration 
Assembly)

Slide from G. Meister,
IGARSS 2023. 



Summary/Outlook 

• Prelaunch calibration of OCI completed successfully in Sep. 2022 – 
thanks to OCI Systems Engineering, OCI I&T Team, and GLAMR team!
• Testing of OCI after integration to Spacecraft completed in October 

2023; one more round of (limited) testing planned for December 
2023 at the launch site
• Performance of OCI passed all requirements, exceeded expectations 

in many aspects; all calibration LUTs have been created for 
operational processing of dn to radiances
• We are on track for launch early 2024 (January 30th?)

24
Slide from G. Meister,
IGARSS 2023. 



Backup
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K1 (gain), dispersion, bandwidth, out-of-band

samples. The wavelengths within each FPA show a base 
response at 10-5 with electronic crosstalk peaks at 10-4 every 
20nm. There are some isolated optical crosstalk peaks up to 
10-3. These peaks were expected from the optical and 
electronic models. 

The SWIR Detector Assembly provides nine bands as 
shown in Table 1. Figure 5 shows the in-band RSR profile for 
each SWIR band. Most bands show a clear “hump” on the 
upper edge of the band. This is thought to be due to the edge 
effects of the filters. Figure 6 shows a log plot of the OOB 
RSR for each SWIR band. Like the hyperspectral bands, the 
noise floor limited the RSR to a minimum of 10-6. There are 
clear OOB response features in each band with peaks up to 
10-4. These features were expected based on component level 
testing of the SDA. 

 
5. CONCLUSION 

 
The Flight test campaign completed in November 2022. The 
OCI spectral characteristics were measured in TVAC using 
GLAMR as a monochromatic source. All tested OCI bands 
were found to be within requirements. Measuring the spectral 
characteristics is a large test that requires hundreds of 
measurements taken over many days in TVAC. 
Measurements were repeated if the GLAMR source was 
unstable. This required real time monitoring of the GLAMR 
source and OCI by test conductors as well as daily OCI 
analysis to ensure all required data points were recorded 
within stability requirements. Automatic flags and then 
manual data quality checks were made during post processing 
to ensure the best collects were used for each data point. The 

OCI Flight Unit performed as expected based on modeling 
and the OCI Engineering Test Unit (ETU) that was 
characterized in 2020 and 2021 [9,10]. The spectral 
characterization of the Flight Unit went very well based on 
lessons learned on the ETU. In particular, the SWIR in-band 
regions were covered better and the GLAMR performance 
was improved to output higher radiance in the UV region 
from 340nm to 550nm. 
 
 
 
 
 

 
Figure 4. Results for all UV-VIS (blue stars) and VIS-
NIR (red circles) FPA bands. Top left plot shows the 
spectral dispersion as the difference from the measured 
center wavelengths to the nominal center wavelengths of 
each band. Top right shows the bandwidth for each 
band. Bottom left shows the measured absolute system 
gain. Bottom right shows the integrated out-of-band 
response ratio. 

 
Figure 3. Measured in-band RSR for 9 select bands in the 
UV-VIS and VIS-NIR FPAs. Circles are individual 
measurements. The nominal band center wavelength 
and FPA name is displayed on each plot. 

 
Figure 2. Out-of-band RSR for 9 select bands from the 
UV-VIS and VIS-NIR FPAs in log scale. Negative RSR 
values plotted as the absolute value (red dotted line). The 
nominal band center and FPA name is displayed on each 
plot. 
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Figure and table taken from Kitchen-McKinley et al.,
PACE OCI Flight Unit Prelaunch Spectral 
Characterization, IGARSS 2023, Pasadena, CA.
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Band 
Name 
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Figure 6. Measured in-band RSR for all 9 SWIR bands. 
Circles are individual measurements. The nominal band 
center wavelength is displayed on each plot. 

 
Figure 5. Out-of-band RSR for all 9 SWIR bands in log 
scale. Negative RSR values plotted as the absolute value 
(red dotted line). The nominal band center wavelength is 
displayed on each plot. 
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