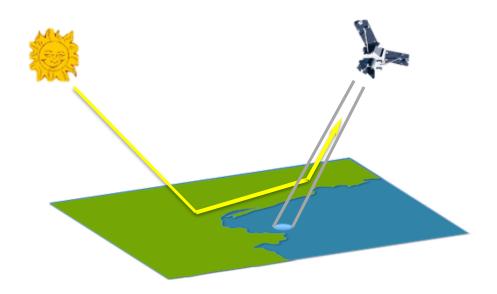
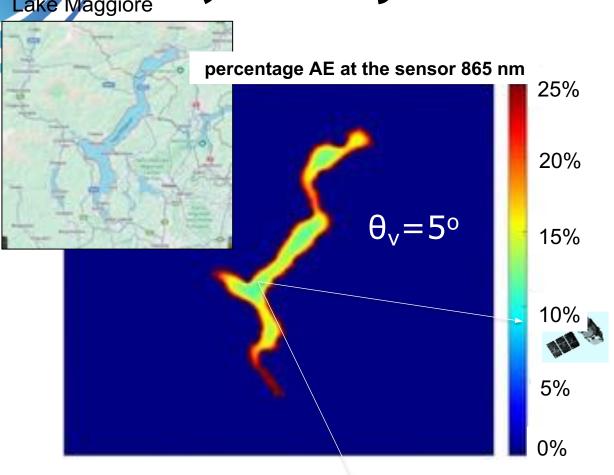
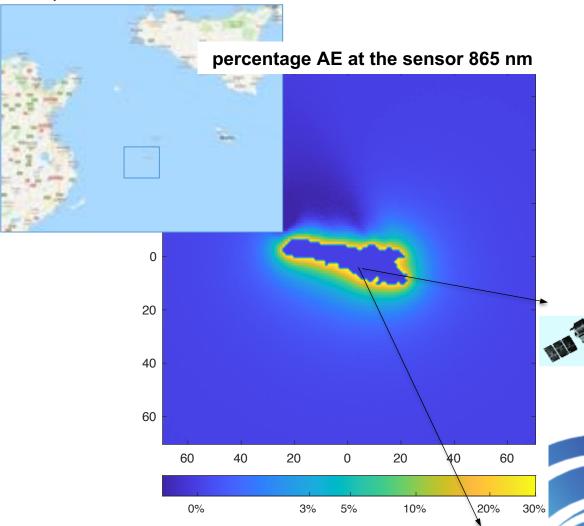
Inland and coastal water remote sensing: current status and future directions in the correction of adjacency effects


Chairs: Barbara Bulgarelli, Alexandre Castagna

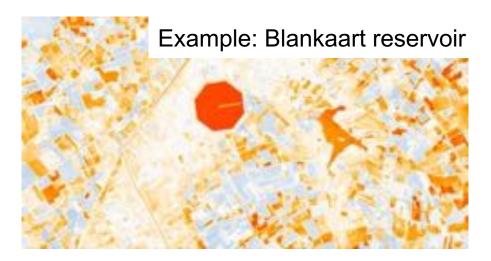
IOCS-2025 Darmstadt, Germany 1 - 4 December 2025


Adjacency Effects

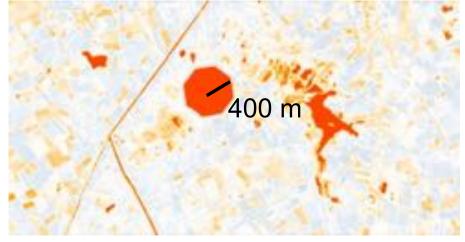
Adjacency effects arise when a scattering atmosphere is superimposed to a non-uniform surface:


light scattered from bright adjacent pixels contaminates the signal received by the satellite sensor from the darker target pixel, resulting in an inaccurate measurement.

Adjacency effects



Adjacency effects


B4 (665 nm)

~ 99% lakes < 1km²

~ 99% rivers < 1km wide

B8A (864 nm)

MSI/Sentinel-2B, 2021-03-31

Relative difference

Review of Existing IOCS Recommendations

2017.04.3: Apply spectral unmixing approaches to correct for AE from adjacent land/ice (Community/OPEN)

some non AE-specific recommendations for atmospheric corrections, optically complex waters, uncertainties

Review of Other Recommendations

From CEOS-ARD for Aquatic Reflectance:

Per pixel metadata:

2.14. adjacency effects: depending on the AC method, amount of per-pixel adjacency effects contamination.

Goal (desired) requirement

Products and Algorithms:

3.11. Adjacency effects correction. <u>Goal</u> (desired) requirement

Goals of the Breakout Workshop

- Establishing a consensus in the parameters utilized to quantify
 AE in satellite data from inland and coastal waters
- Overview available tools for the quantification of AE, and to identify key AE dependencies, feasible approximations, as well as aspects that still need to be addressed.
- inventorying current potential algorithms for the operational correction of AE in satellite radiometric data from coastal and inland waters
- identify gaps and research needs, as well as areas of collaborations (with specific focus on AE algorithm intercomparison and validation with in-situ data)

/ Agenda

Time	Description	Presenter
14:30	Session Starts and Introduction	Barbara Bulgarelli (JRC-EC)
14:42	Impact of adjacency effect on high resolution products in operational services.	Carsten Brockman (Brockman Consult, D)
14:54	Assessing the impact of adjacency effects on atmospheric correction using Monte-Carlo simulations with the SMART-G radiative transfer code	François Steinmetz (HYGEOS, F)
15:06	Quantification of adjacency effects in inland and coastal waters by the sensor-agnostic MIP-Adjacency correction processor	Thomas Heege (EOMAP, D)
15:18	GAAC: a Genetic Algorithm for Adjacency Correction for Inland Waters	Simon Belanger (University of Quebec, CA)
15:30	Coffee Break	
16:00	Sensor-generic AE correction in aquatic remote sensing using T-Mart	Yulun Wu (University of Ottawa, CA, online)
16:12	Atmospheric correction in the presence of adjacency with ACOLITE/RAdCor	Alexandre Castagna (Ghent University, BE)
16:24	Open discussion	
17:30	Session Ends	

New IOCS Recommendations to support future operational correction of adjacency effects (AE)

- → The community should further develop algorithms for the correction of AE, refining the capability to account for atmospheric optical properties and off-nadir view, including the capability to account for water surface reflectance anisotropy, evaluating algorithm uncertainties
- → The space agencies should support the further development of AE correction algorithms
- → The community should collect reference in-situ measurements for the validation of AE correction algorithms (i.e., near-to-the-shore in coastal waters and large inland water basins and over small or narrow water bodies)
- → The space agencies and IOCCG should promote intercomparison exercises of AE correction algorithms with reference in-situ data and potentially with synthetic data
- → The community should develop flags identifying satellite data pixels potentially contaminated by AE