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First Name Name Institute Title

Severine Alvain LOG - CNRS Towards phytoplankton community structure detection 
thanks to the synergy between theoretical approach and in 
situ observations.

Lionel Arteaga GEOMAR Satellite-derived ocean primary production inferred by an
optimality-based phytoplankton model

Astrid Bracher Alfred-Wegener-Institute 
Helmholtz Centre for Polar and 
Marine Research

Ocean colour products from hyper-spectral satellite data of 
SCIAMACHY using the PhytoDOAS method and the radiative 
transfer model SCIARAN

Astrid Bracher Alfred-Wegener-Institute 
Helmholtz Centre for Polar and 
Marine Research

Overview on algorithms to derive phytoplankton community 
structure from satellite ocean colour

Julien Brajard LOCEAN/IPSL/UPMC Using the near pixels of ocean colour images to perform the 
atmospheric correction over turbid waters.

Nayara Bucair Aveiro University Diatoms blooms detected by remote sensing

Ivona Cetinic University of Maine Multi-sensor, ecosystem-based approaches for estimation of 
Particulate Organic Carbon

Sumit Chakraborty University of Massachusetts 
Dartmouth

Bio‐optical properties of the northern Gulf of Mexico: Ship 
based and satellite observations

Lesley Clementson CSIRO A dataset of global in situ observations for the development 
and comparison of Phytoplankton Functional Type (PFT) 
algorithms.

Maycira Costa University of Victoria MODIS atmospheric correction and chlorophyll products in 
the Strait of Georgia, British Columbia, Canada.

Susanne Craig Dalhousie University Statistical Derivation of Inherent Optical Properties and 
Chlorophyll a From an Optically Complex Coastal Site

Miroslaw Darecki Institute of Oceanology of the 
Polish Academy of Science

A satellite-based operational system for remote sensing of 
the Baltic ecosystem

Pierre-Yves Deschamps HYGEOS Atmospheric scattering and ocean color: errors due to the 
spherical atmosphere
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Roland Doerffer Brockmann Consult & HZG The Information content of reflectance spectra and the 
uncertainties of derived IOPs of coastal waters

Ana Dogliotti Instituto de Astronomía y Física 
del Espacio (IAFE)

Can a single turbidity algorithm be used in all turbid waters?

Vincent Fournier-Sicre EUMETSAT SENTINEL-3 Optical Sensors Products and Algorithms

Robert Frouin Scripps Institution of 
Oceanography

Bayesian Methodology for Ocean Color Remote Sensing

Rodrigo Garcia Remote Sensing and Satellite 
Research Group, Department of 
Imaging and Applied Physics, 
Curtin University

Routine monitoring of bathymetry and habitat maps derived 
from HICO imagery: Case study of Shark Bay, Western 
Australia.

Michelle Gierach Jet Propulsion Laboratory Biological response to the 1997-98 and 2009-10 El Niño events 
in the equatorial Pacific Ocean

Alex Gilerson City College of New York The retrieval of attenuation and scattering coefficients of 
marine particles from polarimetric observations

Jim Gower Institute of Ocean Sciences An improved FLH product for MERIS and OLCI

Clémence Goyens CNRS, UMR 8187,ULCO, LOG A hybrid MUMM NIR-Corrected algorithm for the atmospheric 
correction of turbid waters

Taka Hirata Hokkaido University Satellite Phytoplankton Functional Type Algorithm 
Intercomparison and validation

Toru Hirawake Hokkaido University Retrieval of size fractionated chlorophyll a concentration: an 
application of particle size distribution

Chuanmin Hu University of South Florida Ocean color data product uncertainty, consistency, and 
continuity: Evaluation with a new algorithm concept

Ian Jones University of Sydney Particle Retention in the Moroccan Coastal Ocean
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Mati Kahru Scripps Institution of 
Oceanography

Optimized multi-satellite merger to create time series of 
inherent optical properties in the California Current

Tihomir Kostadinov University of Richmond Carbon‐based Phytoplankton Functional Types and 
Productivity via Remote
Retrievals of the Particle Size Distribution

Susanne Kratzer Department of Ecology, 
Environment and Plant Sciences

Robust Kd(490) and Secchi depth algorithms for remote 
sensing of optically complex waters dominated by CDOM

Zhongping Lee University of Massachusetts 
Boston 

Estimation of spectral attenuation coefficient of downwelling 
irradiance: from oligotrophic to coastal waters

Soo Chin Liew National University of Singapore Deriving suspended sediment and turbidity products from 
remote sensing reflectance in turbid coastal waters

Ronghua Ma Nanjing Institute of Geography 
and Limnology, Chinese 
Academy of Sciences

Remote sensing of Lake Taihu

Ronghua Ma Nanjing Institute of Geography 
and Limnology, Chinese 
Academy of Sciences

An extension of water color remote sensing: unusual link to 
particle particulate organic carbon

Antonio Mannino NASA Goddard Space Flight 
Center

Development and Analysis of Ocean Color Satellite DOM 
Products for Studies in Coastal Ocean Dynamics

Zhihua Mao Second Institute of 
Oceanography,SOA

A new approach to estimate the aerosol scattering radiance 
for Case 2 waters

Salvatore Marullo ENEA Detecting dominant Phytoplankton Size Classes (micro, nano 
and pico phytoplankton) from SeaWiFS data in the 
Mediterranean Sea: spatial and temporal variability

Mark Matthews University of Cape Town Distinguishing cyanobacteria from algae in eutrophic near-
coastal and inland waters from space: theory and applications

Frederic Melin E.C. Joint Research Centre In search of long‐term trends in the ocean colour record

Martin Montes-Hugo Université du Québec a 
Rimouski 

A hybrid halo-optical remote sensing model for characterizing 
particulates in the Saint Lawrence Estuary
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Gerald Moore Bio-Optika Evolution of the MERIS Bright Pixel Atmospheric Correction: 
accounting for glint.

Tim Moore University of New Hampshire Uncertainty analysis on ocean color products for select semi 
analytic algorithms

Wesley Moses Naval Research Laboratory HICO-Based NIR-red Algorithms for Estimating Chlorophyll-a 
Concentration in Inland and Coastal Waters – the Taganrog 
Bay Case Study

Colleen Mouw Michigan Technological 
University

Phytoplankton size variability in the global ocean

Mauricio Noernberg Center for Marine Studies - 
UFPR

Comparison of atmospheric corrections of HICO images of a 
subtropical estuarine region in Brazil.

Emanuele Organelli LOV-CNRS/UPMC The multivariate Partial Least Squares regression technique 
for the retrieval of algal size structure from particle and 
phytoplankton light absorption spectra

Sherry Palacios NASA Ames Research Center A novel algal discrimination algorithm based on first 
principles of aquatic optics and applied to hyperspectral 
remote sensing imagery of the coastal ocean

Steef Peters Water Insight Validation of the WISP algorithm for 9 years of MODIS 
observations on Dutch monitoring stations

Andrea Pisano CNR-ISAC Rome A new oil spill detection methodology for MODIS and MERIS 
satellite imagery: an application to the Mediterranean Sea

Cecile Rousseaux USRA/GMAO NASA Satellite views of global phytoplankton community 
distributions using an empirical algorithm and a numerical 
model

Kevin Ruddick RBINS/MUMM The saturation reflectance in turbid waters

Mhd. 
Suhyb

Salama ITC faculty, University of Twente Calibration and validation of ocean color bio-optical models

Joseph Salisbury University of New Hampshire Linking terrestrial fluxes and biogeochemical variability in the 
coastal ocean: the role of hydrological models and new 
satellite ocean color and salinity  sensors.
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Bertrand Saulquin ACRI-ST Detection of linear trends in multi-sensor time series in 
presence of auto-correlated noise: application to the 
chlorophyll-a SeaWiFS and MERIS datasets and extrapolation 
to the incoming Sentinel 3 - OLCI mission.

Bertrand Saulquin ACRI-ST Water typed merge of chl-a algorithms and the daily Atlantic 
(1km) and global (4km) chlorophyll-a analyses of MyOcean II.

Mike Sayers Michigan Tech Research 
Institute

Satellite Derived Primary Productivity Estimates for Lake 
Michigan

Thomas Schroeder CSIRO CDOM a useful surrogate for salinity: Mapping the extent of 
riverine freshwater discharge into the Great Barrier Reef 
lagoon from MODIS observations

Anatoly Shevyrnogov Institute of Biophysics SB RAS Seasonal dynamics of surface chlorophyll concentration as an 
indicator of hydrological structure of the ocean (by satellite 
data)

Wei Shi NOAA/NESDIS/STAR Vicarious Calibration Efforts for VIIRS Operational Ocean 
Color EDR

Wei Shi NOAA/NESDIS/STAR Sea ice properties in the Bohai Sea measured by MODIS-
Aqua: Satellite Algorithm and Study of Sea Ice Seasonal and 
Interannual Variability

David Siegel UC Santa Barbara A Mechanistic Assessment of Global Ocean Carbon Export 
From Satellite Observation

Heidi Sosik Woods Hole Oceanographic 
Institution

Seasonal to Interannual Variability in Phytoplankton Biomass 
and Diversity on the New England Shelf: In Situ Time Series to 
Evaluate Remote Sensing Algorithms

Knut Stamnes Stevens Institute of Technology Retrieval of aerosol and marine parameters in coastal 
environments: The need for improved biooptical
models

François Steinmetz HYGEOS Polymer: a new approach for atmospheric and glitter 
correction

Sindy Sterckx VITO Validation SIMEC adjacency correction for Coastal and Inland 
Waters?

Vyacheslav Suslin Marine Hydrophysical Institure 
of NASU

Development of the Black Sea bio-optical algorithms: 
applications and some results based on ocean color scanner 
data sets
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Gavin Tilstone Plymouth Marine Laboratory Accuracy assessment of satellite Ocean colour products in 
coastal waters

Kevin Turpie NASA/GSFC Coastal and Inland Water Data Product from the 
Hyperspectral Infrared  Imager (HyspIRI)

Michael Twardowski WET Labs, Inc Improving remote sensing water quality algorithms

Maria Tzortziou University of Maryland Atmospheric trace‐gas dynamics and impact on ocean color 
retrievals in urban estuarine and coastal ecosystems

Quinten Vanhellemont RBINS/MUMM A benchmark dataset for the validation of MERIS and MODIS 
ocean colour turbidity and PAR attenuation algorithms using 
autonomous buoy data.

Gianluca Volpe Istituto di Scienze 
dell'Atmosfera e del Clima

The Mediterranean Ocean Colour Observing System: product 
validation

Toby Westberry Oregon State University The Influence of Raman Scattering on Ocean Color Inversion 
Models

Monika Wozniak Institute of Oceanography Assessment of bio-optical algorithms for satellite radiometers 
in coastal waters of the Baltic Sea using in situ measurements

Pengwang Zhai SSAI Inherent Optical Properties of Coccolithophores: Emiliania 
Huxleyi

Yuchao Zhang Nanjing Institute of Geography 
and Limnology, Chinese 
Academy of Sciences

Accurate estimation on floating algae area in Lake Taihu, 
China

Guangming Zheng Scripps Institution of 
Oceanography

Evaluation of the Quasi‐Analytical Algorithm for estimating 
the inherent optical properties of seawater from ocean color: 
Comparison of Arctic and lowerlatitude waters
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Towards phytoplankton community structure detection thanks to the synergy between theoretical 
approach and in situ observations.

ALVAIN, Severine1; Loisel, Hubert1; Dessailly, David1 ; Thyssen Melilotus3 ;Morin 
Pascal2 ;Guiselin Natacha1 ; Macé Eric2.

1LOG - CNRS 32 avenue Foch, Wimereux, 62930, France

2Station Biologique de Roscoff, CNRS-UPMC, Roscoff France

3Mediterranean Institute of Oceanology, 13288 Marseille 

Despite  observations  in  good  agreement  with  in  situ measurements,  the  underlying  theoretical 
explanation of  methods  based on radiances  anomalies  to  detect  phytoplankton groups (like the 
PHYSAT one) is missing. This prevents improvements of the methods and limits characterization of 
uncertainties on the inversed products. In a recent study, radiative transfer simulations have been 
used in addition to in-situ measurements to understand the organization of the radiances anomalies 
used in the PHYSAT method. Sensitivity analyses have been performed to assess the impact of the 
variability of the following three parameters on the reflectance anomalies: specific phytoplankton 
absorption,  colored dissolved organic matter absorption,  and particles backscattering.  While  the 
later parameter explains the largest part of the anomalies variability, results show that each group is 
generally associated with a specific bio-optical environment which should be considered in future 
studies. We will show that the magnitude of the theoretically defined anomalies for the three main 
PHYSAT groups  is  in  good agreement  with  specific  anomalies  empirically  highlighted  before. 
Complementary studies, based on large in situ database of IOPs measurements, will be necessary in 
the future to obtain a better agreement between the theoretical and PHYSAT spectral anomalies for 
the different groups. A project based on automatic in situ measurements approaches on board ferry-
box is proposed. We will show also how our recent work opens doors for improving phytoplankton 
groups’ detection when coupled with in situ expertise. For example, the definition of the validity 
ranges for each group based on their optical properties in order to avoid misclassification. This also 
opens new potential development by considering phytoplankton groups and composition and their 
environmental conditions together. 



Satellite-derived ocean primary production inferred by an
optimality-based phytoplankton model

Lionel Arteaga, Markus Pahlow and Andreas Oschlies

GEOMAR | Helmholtz Centre for Ocean Research Kiel
Email: larteaga@geomar.de

Summary

Optimality-based models of phytoplankton growth offer the potential to help under-
stand the interrelations between phytoplankton stoichiometry and primary production
in the ocean. Here we apply an optimality-based model to analyze remote-sensing
and in-situ data in order to infer seasonally varying patterns of growth colimitation
by light, nitrogen, and phosphorus in the global ocean. Based on these results, we
seek to estimate global marine primary production, derived from satellite estimations
of nutrient (nitrogen) and light, using a model that accounts for acclimation of the
chlorophyll to carbon ratio (Chl:C). One of the aims of this study is to investigate to
what extent having a flexible Chl:C ratio alters primary production estimations with
respect to more traditional ocean color derived algorithms.

Introduction

Our current understanding of the physical and biogeochemical controls on marine
biological production does not allow to accurately describe its future evolution under
changing climate and environmental conditions. To better assess how primary produc-
tion and phytoplankton growth may change in the future, it is essential to know what
limits production under present circumstances. While limitation by a single resource
is possible, different flavors of colimitation can occur as well [1]. Which combination
of factors limits growth may control both magnitude and sign of the response of the
ecosystem to CO2-driven global changes such as warming-induced stratification.

Here we use the optimality-based chain model [3] as a mechanistic foundation for
the physiological regulation of nutrient acquisition and light harvesting to diagnose
N, P, and light limitation, based on field and satellite data of nutrients, light, and
temperature in the surface ocean. Based on these results, we also use the model to
estimate global marine primary productivity.

Results and Discussion

Our model-based results indicate nitrogen and light as the main two factors control-
ling phytoplankton growth in the global ocean. There is essentially no ocean region
with dominant phosphorus limitation. While our current version of the model does not
include iron, we believe that acounting for this nutrient will accentuate light limitation



in well known iron limited areas such as the Southern Ocean.

As nitrogen is identified as the major limiting nutrient, we use a multiple linear
model to estimate nitrate concentrations in the surface ocean, from satellite data
of sea surface temperature, mixed layer depth, and chlorophyll. Photosynthetically
active radiation is represented by the “Median Mixed Layer Light Level” [g, 4]. g ap-
proximates the average light intensity experienced by phytoplankton in the surface
mixed layer.

So far our carbon-based primary production estimates are higher than those ob-
tained by more traditional ocean color models [e.g. 5]. Our next step is to analyze
differences in marine productivity resulting from the physiological acclimation of phy-
toplankton to different seasonal nutrient and light limitation regimes.

This work is a contribution of the Seventh Framework Programme (FP7) - project
“Ocean Strategic Services beyond 2015” (www.oss2015.eu).
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Figure 1: Global marine primary production derived from satellites. Left: Vertical Generalized
Production Model (VPGM) [5]. Right: Combined satellite and optimality-based model.
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Overview on algorithms to derive phytoplankton community structure from 
satellite ocean colour 
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Research (AWI), Bussestraße 24, 27570 Bremerhaven, Germany 
2CSIRO Centre for Environment and Life Sciences, Underwood Avenue, Floreat,  
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Summary 
 
Different bio-optical and ecological methods have been established that use ocean color data to 
identify and differentiate between phytoplankton functional types (PFTs) or phytoplankton size 
classes (PSCs) in the surface ocean. These can be summarized into four main types: spectral-
response methods which are based on differences in the shape of the light reflectance/absorption 
spectrum for different PFTs/PSCs, methods which use information on the magnitude of chlorophyll 
biomass or light absorption to distinguish between PFTs or PSCs, methods that retrieve the particle 
size distribution from satellite-derived backscattering signal and derive PSCs, and ecological-based 
approaches which use information on environmental factors. Within this presentation we will give 
an overview over the presently available algorithms. Based on the input we get from the algorithm 
developers we will try within the short time to present for each product its spatial and temporal 
coverage, (potential) applications, uncertainties, benefits and short comings. 
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Ocean colour products from hyper-spectral satellite data of SCIAMACHY using 
the PhytoDOAS method and the radiative transfer model SCIARAN 

 
Astrid Bracher1, T. Dinter1, A. Sadeghi1, M. Altenburg Soppa1, B. Taylor1, J.P. Burrows2, V. Rozanov2 
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Summary 
 
Quantitative distributions of major functional PFTs of the world ocean improve the understanding of 
the role of marine phytoplankton in the global marine ecosystem and biogeochemical cycles. 
Information on the attenuation and light penetration depth tells us the extend of phytoplankton 
primary production and until which depth satellite obtain information on ocean colour. 
 
In this study, global ocean color satellite products of different dominant phytoplankton functional 
types' (PFTs') biomass and the vibrational Raman scattering (VRS, i.e. the inelastic light scattering at 
water molecules, for different wavelength ranges retrieved from hyperspectral satellite data of the 
satellite sensor SCIAMACHY (SCanning Imaging absorption spectrometer for Atmospheric 
ChartographY on board ENVISAT, operating 2002-2012) using Differential Optical Absorption 
Spectroscopy applied to phytoplankton (PhytoDOAS) are presented (see also Vountas et al. 2007, 
Bracher et al. 2009, Sadeghi et al. 2012a).  
 

 

Figure 1 Mean chl-a conc. in March 2007 of different phytoplankton groups derived with PhytoDOAS from 
SCIAMACHY data. Representative photographs for each group from S. Kranz and S. Wiegmann (AWI). 

 
PhytoDOAS allows the determination of biomass of the four different phytoplankton groups 

(Sadeghi et al. 2012a, Fig. 1) analytically and independent from a priori information using high 

spectrally resolved satellite data from SCIAMACHY. The method is an extension of the Differential 

Optical Absorption Spectroscopy (DOAS by Platt 1974), used for satellite retrievals of trace gas 

columns (Burrows et al. 1999). In addition to atmospheric compounds, PhytoDOAS also accounts for 

the differential absorption of water and its constituents.  
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VRS has been retrieved following the approach of Vountas et al. (2007) but now the radiative transfer 
model SCIATRAN (Rozanov et al. 2005) now fully coupled for atmospheric and oceanic transfer (Blum 
et al. 2012) was used to model the pseudo-absorption spectra to be used in PhytoDOAS which 
account for the differential spectral effect of filling-in of Fraunhofer lines. The radiative transfer 
calculation were used to calculate inelastic scattering at the whole UV-VIS wavelength range and 
different wavelength ranges (UV-a, blue) were identified where due to strong differential VRS 
structures the inelastic scattering effect could be used to retrieve its signature in satellite data. In 
addition radiative transfer calculations were used to calculate the dependence of VRS at different 
wavelength ranges to the light penetration depth and attenuation coefficient. By this a UV and blue 
attenuation coefficient data product is developed with a retrieval which is not influenced by 
interfering effects of phytoplankton, other particle or CDOM absorption and scattering. As for the 
PhytoDOAS PFT products, this hyperspectral ocean color products are retrieved analytically, 
simultaneously with atmospheric components from level-1 (top of atmosphere) SCIAMACHY 
radiances. The retrieval is less dependent on a-priori assumptions and empirical relationships than 
multispectral ocean color products. Comparisons of these hyperspectral data to ocean color products 
from multispectral sensors and application of the hyperspectral data set in studying phytoplankton 
dynamics are shown (Sadeghi et al. 2012b). Although current hyperspectral sensors have poor spatial 
resolution (>30 km x 30 km), they are useful for the verification and improvement of the high 
spatially resolved multi-spectral ocean color products. Future applications of PhytoDOAS retrieval to 
other hyperspectral sensors and its synergistic use with information gained from multispectral ocean 
color sensors are proposed. 
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Summary	
  

A	
  new	
  approach	
  is	
  proposed	
  to	
  perform	
  atmospheric	
  correction	
  over	
  turbid	
  water.	
  This	
  approach	
  makes	
  
no	
   assumption	
   on	
   the	
   water-­‐leaving	
   reflectance	
   spectrum	
   in	
   the	
   near-­‐infrared	
   and	
   uses	
   the	
   spatial	
  
context	
  of	
  the	
  pixel.	
  It	
  was	
  applied	
  to	
  MERIS	
  image	
  in	
  the	
  Adriatic	
  Sea.	
  

Introduction	
  
Ocean	
   colour	
   sensors	
  measure	
   the	
   solar	
   flux	
   reflected	
  by	
   the	
  ocean	
   and	
   the	
   atmosphere.	
   In	
   order	
   to	
  
estimate	
   the	
   oceanic	
   component,	
   a	
   critical	
   step	
   in	
   the	
   processing	
   of	
   the	
   top-­‐of-­‐atmosphere	
   (TOA)	
  
measurements	
   is	
   the	
   so-­‐called	
   atmospheric	
   correction.	
   This	
   involves	
   the	
   removal	
   of	
   the	
   atmospheric	
  
signal	
  in	
  order	
  to	
  deduce	
  the	
  contribution	
  of	
  the	
  ocean	
  only.	
  
Following	
  Gordon	
  (1997),	
  we	
  consider	
  (out	
  of	
  the	
  glitter	
  region	
  and	
  neglecting	
  the	
  whitecaps	
  influence):	
  

	
  (1)	
  

where	
   ρtoa	
   is	
   the	
   total	
   reflectance	
   derived	
   from	
   the	
   satellite	
   measurement	
   ρpath	
   is	
   the	
   atmospheric	
  
reflectance	
   (accounting	
   for	
   the	
   scattering	
   and	
   absorption	
   of	
   aerosol	
   and	
  molecules)	
   ,	
   t	
   is	
   the	
   diffuse	
  
transmittance,	
  ρw	
  is	
  the	
  water-­‐leaving	
  reflectance	
  and	
  λ	
  is	
  the	
  wavelength	
  of	
  the	
  measurement.	
  
For	
   most	
   of	
   the	
   non-­‐turbid	
   waters,	
   the	
   atmospheric	
   correction	
   is	
   named	
   “clear	
   water	
   process”	
  
hereinafter.	
   We	
   can	
   assume	
   that	
   ρw	
   is	
   negligible	
   in	
   the	
   near-­‐infrared	
   part	
   of	
   the	
   signal	
   (λ>700nm).	
  
Making	
   this	
   assumption,	
   it	
   is	
   possible	
   to	
   derive	
   the	
   aerosol	
  model	
   from	
   the	
  near-­‐infrared	
  part	
   of	
   the	
  
signal.	
  Then	
  the	
  atmospheric	
  contribution	
  ρpath	
  and	
  t	
  can	
  be	
  estimated	
  for	
  the	
  whole	
  spectrum.	
  It	
  is	
  then	
  
easy	
  to	
  deduce	
  the	
  water	
  leaving	
  reflectance	
  in	
  visible	
  part	
  of	
  the	
  spectrum	
  applying	
  Eq.1	
  for	
  which	
  the	
  
only	
  unknown	
  term	
  is	
  ρw.	
  
Over	
   turbid	
   waters,	
   though,	
   the	
   variability	
   of	
   ocean	
   content	
   (presence	
   of	
   substances	
   other	
   than	
  
phytoplankton)	
  induces	
  a	
  signal	
   in	
  the	
  near-­‐infrared	
  part	
  of	
  the	
  signal	
  that	
  can	
  cause	
  errors	
  during	
  the	
  
atmospheric	
  correction	
  process.	
  Several	
  solutions	
  were	
  applied	
  to	
  solve	
  this	
  problem	
  (Moore	
  et	
  al.	
  	
  IJRS	
  
1999,	
  Chomko	
  and	
  Gordon	
  AO	
  2001,	
  Stumpf	
  et	
  al.	
  NASA	
  tech	
  2003,	
  Stamnes	
  et	
  al.	
  AO	
  2003,	
  Bailey	
  et	
  al.	
  
IJRS	
  2010,	
  Schroeder	
  et	
  al.	
  IJRS	
  2007,	
  Brajard	
  et	
  al.	
  RSE	
  2012).	
  In	
  any	
  case,	
  it	
  is	
  necessary	
  to	
  make	
  a-­‐priori	
  
hypothesis	
  on	
  the	
  water-­‐leaving	
  reflectance	
  spectrum	
  in	
  the	
  near-­‐infrared	
  which	
  reduce	
  the	
  generality	
  
of	
  the	
  approach.	
  Another	
  family	
  of	
  algorithms	
  proposes	
  to	
  use	
  spatial	
   information	
  of	
  the	
  ocean	
  colour	
  
image	
  (Ruddick	
  et	
  al.	
  2000[1]).	
  The	
  assumption	
  here	
  is	
  that	
  aerosol	
  properties	
  are	
  spatially	
  homogenous	
  
on	
  a	
  region	
  of	
  10km	
  to	
  100km	
  (Hu	
  et	
  al.	
  2000[2]).	
  This	
  last	
  approach	
  reduces	
  the	
  number	
  of	
  assumptions	
  
to	
   be	
   made	
   on	
   the	
   near-­‐infrared	
   part	
   of	
   the	
   water-­‐leaving	
   reflectance	
   spectrum.	
   The	
   present	
   work	
  
addresses	
   this	
  method	
  and	
  proposes	
   to	
  generalize	
   the	
  algorithm	
  making	
  no	
  hypotheses	
  on	
   the	
   turbid	
  
water-­‐leaving	
  reflectance	
  spectrum.	
  

Method	
  
The	
  algorithm	
  proposed	
  here	
  can	
  be	
  considered	
  as	
  a	
  generalization	
  of	
  the	
  approach	
  proposed	
  by	
  Hu	
  et	
  
al.	
  2000.	
  In	
  this	
  work,	
  the	
  spatial	
  neighbourhood	
  is	
  used	
  to	
  determine	
  both	
  the	
  aerosol	
  type	
  and	
  optical	
  
thickness.	
  An	
  objective	
  spatial	
  interpolation	
  was	
  performed	
  to	
  take	
  into	
  account	
  the	
  spatial	
  correlations.	
  
Here	
  are	
  the	
  steps	
  of	
  the	
  algorithm:	
  	
  
1) Classification	
  of	
  the	
  image	
  pixels:	
  turbid	
  or	
  clear	
  water	
  



2) Application	
   of	
   the	
   clear-­‐water	
   process	
   and	
   estimation	
   ,for	
   each	
   clear-­‐water	
   pixel,	
   of	
   the	
   aerosol	
  
optical	
  thickness	
  τ	
  and	
  the	
  Angtröm	
  exponent	
  α	
  linked	
  to	
  the	
  aerosol	
  model.	
  

3) For	
  each	
  turbid	
  pixel,	
  τ	
  and	
  α	
  are	
  estimated	
  with	
  the	
  following	
  equation:	
  

	
   	
   (2)	
  

where	
  x	
   stands	
   for	
  τ	
  or	
  α,	
   the	
   index	
  0	
  designs	
   the	
   turbid	
  pixel,	
  V	
   is	
   the	
  ensemble	
  of	
   the	
  10	
  clear-­‐	
  
water	
  pixels	
  that	
  are	
  the	
  nearest	
  (in	
  the	
  sense	
  of	
  the	
  geographic	
  distance)	
  from	
  the	
  pixel	
  x0,	
  λi	
  are	
  
weighted	
  coefficient	
  that	
  decreases	
  with	
  the	
  distance	
  (the	
  furthest	
  a	
  pixel	
  is	
  ,	
  the	
  less	
  it	
  is	
  correlated	
  
to	
  the	
  turbid	
  pixel).	
  

4) Using	
  τ0,	
  α0	
  determined	
  previously,	
  assuming	
  a	
  Junge	
  size	
  distribution	
  and	
  non-­‐absorbing	
  aerosols,	
  
ρpath	
  and	
  t	
  are	
  computed	
  at	
  all	
  wavelengths	
  using	
  artificial	
  neural	
  networks	
  (Brajard	
  et	
  al.	
  NN,	
  2006).	
  

5) The	
  water-­‐leaving	
  reflectance	
  is	
  deduced	
  using	
  Eq.	
  1.	
  

First	
  result	
  
The	
  algorithm	
   is	
  applied	
  on	
  MERIS	
   image,	
   June	
  2,	
  2009	
   in	
   the	
  
north	
  of	
   the	
  Adriatic	
   Sea.	
   The	
   figure	
  1	
  presents	
   a	
   comparison	
  
between	
   the	
   standard	
   MERIS	
   processing	
   and	
   the	
   modified	
  
product	
   using	
   the	
   algorithm	
   described	
   here	
   for	
   the	
   Angström	
  
exponent	
   and	
   the	
   water-­‐leaving	
   reflectance	
   at	
   490nm.	
   The	
  
MERIS	
  flags	
  CASE2_S,	
  CASE2_ANOM	
  and	
  CASE2_Y	
  were	
  used	
  to	
  
determine	
  turbid	
  waters.	
  For	
  each	
  turbid	
  pixel,	
  the	
  10	
  nearest	
  
pixels	
   were	
   considered.	
   It	
   can	
   be	
   noticed	
   that	
   the	
   standard	
  
Angström	
   exponent	
   is	
   strongly	
   related	
   to	
   the	
   turbidity	
   of	
   the	
  
water,	
  which	
  is	
  likely	
  an	
  artefact	
  of	
  the	
  atmospheric	
  correction	
  
process.	
   It	
   can	
   be	
   seen,	
   that	
   it	
   is	
   not	
   the	
   case	
   for	
   the	
   new	
  
algorithm	
  proposed	
  here	
  (it	
   is	
  particularly	
  visible	
  off	
   the	
  north	
  
coast).	
  Even	
  if	
  the	
  new	
  algorithm	
  seems	
  to	
  presents	
  some	
  bias	
  
for	
   strong	
   aerosol	
   optical	
   thickness	
   (not	
   shown	
   here),	
   the	
  
water-­‐leaving	
   reflectance	
   presents	
   some	
   realistic	
   values	
   and	
  
pattern	
   that	
   are	
   to	
   be	
   validated	
   using	
   in-­‐situ	
   data	
   (e.g.	
  
Helgoland	
  site	
  P.I.	
  R.	
  Doerffer).	
  It	
  validates	
  the	
  assumption	
  that	
  
it	
  is	
  possible	
  to	
  use	
  spatial	
  information	
  to	
  perform	
  atmospheric	
  
correction	
  over	
  turbid	
  waters.	
  

Conclusion	
  
The	
   method	
   proposes	
   here	
   is	
   a	
   first	
   step	
   to	
   explore	
   the	
  
possibilities	
   of	
   using	
   image	
   information	
   to	
   solve	
   inverse	
  
problems	
   for	
   ocean	
   colour	
   data.	
   The	
   use	
   of	
   interpolations	
  
techniques	
   could	
   give	
   objective	
   criteria	
   to	
   quantify	
   uncertainty	
   of	
   the	
   result.	
   The	
   approach	
   proposed	
  
here	
  makes	
  the	
  maximal	
  assumption	
  that	
  the	
  signal	
  over	
  turbid	
  waters	
  cannot	
  be	
  used	
  at	
  all	
  to	
  estimate	
  
the	
  aerosol	
  contribution.	
  This	
  simplification	
  was	
  made	
  in	
  order	
  to	
  evaluate	
  the	
  effects	
  of	
  this	
  algorithm	
  
only.	
  In	
  the	
  future,	
   it	
   is	
   likely	
  that	
  accurate	
  results	
  can	
  be	
  obtained	
  using	
  a	
  mixed	
  approach	
  using	
  both	
  
the	
  neighbouring	
  pixels	
  and	
  the	
  signal	
  over	
  turbid	
  waters.	
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Figure	
   1.	
   Standard	
   MERIS	
   products	
   (left)	
  
compared	
   to	
   the	
  new	
  algorithm	
  products	
  
(right)	
  for	
  α	
  (up)	
  and	
  ρw(490nm)	
  (bottom).	
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Summary 

Diatom blooms are recurrent along the Portuguese coast during summer in response to the prevailing 
upwelling conditions. Preexistent algorithms to differentiate this group from other phytoplankton 
communities were used and adapted for the study area. Normalized water-leaving radiance (nLw) was 
analyzed to distinguish the specific diatoms group for the particular conditions of the region. The 
satellite data were compared with in situ data, obtained from an oceanographic cruise carried out in 
summer 2011. An empiric approach demonstrates that diatoms correspond to high reflectance on the 
wavelength of 412nm. 

 

Introduction 

Early satellite ocean color missions were designed to provide synoptic chlorophyll a (Chl.a) 
concentration fields. Currently, the foremost application is to monitor the response of the marine 
ecosystem to climate change. This has been mainly accomplished by the ability to trace changes in the 
spatial and temporal distribution of the phytoplankton concentration. In addition to its contribution to 
the ocean's primary production, marine phytoplankton takes part of important biogeochemical cycles. 
Some species incorporate nitrogen as feedstock, as the cyanobacteria’s group, while others as 
coccolithophores are responsible to capture calcium carbonate from the system to build their calcite 
plates. Another representative group are the diatoms, that contribute to about 40% of the total marine 
primary production. This group is usually found in nutrient-rich waters, dominating the phytoplankton 
assemblages during the spring blooms in temperate and Polar regions [1]. Both diatoms and 
coccolithophores have high sinking rates contributing to the carbon export into the deep ocean [2]. 

Previous studies show that summer oceanographic conditions along the west Portuguese coast are 
influenced by coastal upwelling driven by persistent equatorward winds [3], providing the necessary 
conditions for phytoplankton growth [4]. Studies on coastal upwelling ecosystems revealed that diatoms 
are also the dominating group during the intensification phase of upwelling events [5]. 

Aiming to detect the occurrence of diatom blooms in the central Portuguese coast, the concept of 
Plankton Functional Type (PFT) has been adopted. The specific absorption coefficients of phytoplankton 
cells can vary because of differences in the pigment composition and size structure of phytoplankton 
populations [6]. As chl.a are present in almost all marine phytoplankton, the discrimination of PFT must 
be performed analyzing accessories pigments (biomarkers)[7]. 

 

Discussion 

Diatom populations are known to be related to high chl.a concentration [7]. Their signature is readily 
observed on the images obtained during the 2011 summer cruise off the NW Portuguese coast, using a 



range of Chl.a between 0.04 and 3.0 mg m-3. The use of this range allows to focus the analysis on areas 
out of both the influence of oceanic oligotrophic and continental sediment dominated waters (figure 1). 

The higher Chl.a concentrations detected on the satellite 
data are comparable with in situ diatom distribution. 

Water dominated by diatoms is associated with the highest 
backscattering, and exhibit much lower absorption 
coefficient than other phytoplankton populations [6]. Being 
in some cases, detectable at short wavelength (412 and 443 
nm) however, the absorption by the yellow substance is a 
potential error source because it may influence nLw values 
on this spectral range. 

  

 

Conclusions 

Using adequate algorithms, it is possible to associate same parameters to distinguish diatoms from the 
other marine phytoplankton groups, mainly due to the high nLw at short wavelengths, such as Rrs 412. 
The results suggest that an empirical approach may be used to discriminate diatoms blooms using 
remote sensing off the Portuguese coast.  
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Summary 

 
Uncertainties in remote-sensing retrieval of the particulate organic carbon concentration in the ocean 
can be attributed in part to differences in methodology among researchers and in part to inherent 
variability in the nature of oceanic particles themselves and the relationships between these particles 
and their optical properties. Here we present a novel approach that could lead to a better 
understanding of the underlying mechanisms that govern the variability of particulate organic carbon 
optical relationships. By using new and improved in-situ optical methodologies, we aim to develop a 
new multi-sensor, ecosystem-based remote sensing algorithm for assessing particulate organic carbon. 
 
Introduction 
 
Particulate organic carbon (POC) in the surface ocean is a major, dynamic carbon reservoir, and through 
the biological pump, provides a means for the transfer and potential storage of atmospheric CO2 into 
the deep ocean. Total POC, as well as the phytoplankton fraction, is of great interest in biogeochemical 
studies, in part because of the potential changes in the biological pump due to climatic impacts. 
However, the variability of POC both regionally and globally is poorly understood due to a lack of direct 
measurements at sufficient spatial and temporal 
scales. The availability of high-resolution optical 
measurements from ocean color remote sensing 
and in-situ optical instrumentation has stimulated 
interest in the development of optical POC proxies 
that allow quantification of POC on temporal and 
spatial scales that surpass traditional, discrete water 
sampling methods. Current POC algorithms are 
based on both particulate beam attenuation and 
particulate backscattering coefficients (e.g., Fig. 1), 
but both display great variability as a function of 
geographical regime and/or investigator, leading us 
to ask the following questions: 

1. What are the mechanisms responsible for the 
observed variability in optical proxy 
algorithms? Is the variability natural (inherent 
to the specific ecosystem or regime) or due to 
methodology (both chemically-measured and 
optical proxy POC)? 

Figure 1. POC vs. cp slope as a function of maximum 
cp observed for each data set from [1]. The regression 
includes eight data sets summarized by [2] (r

2
=0.82). 

Most of the literature values fall within the 95% 
confidence interval (dashed line). Gray shaded area 
depicts the oceanic cp threshold range (from the 
ACE/PACE white paper appendix). 



2. If the variability is natural, what are the drivers of the observed variability? We hypothesize that 
part of the variability in the optical proxy algorithms is related to differences in phytoplankton 
taxa and community composition, composition of non-phytoplankton particles, and ecosystem 
function (i.e., recycling community or not). 

3. Can we build better proxies by taking these differences, as well as other environmental 
parameters that can be remotely sensed, into consideration? 

 
Discussion 
 
We are entering an era (or we are already there?) when most estimates of POC are derived using optical 
proxies (both in-situ and remotely sensed). These estimates of POC have been - and will continue to be 
used - to derive carbon budgets and ecosystem predictions, with potential impacts on environmental 
public policy and decision-making. Hence, it is an imperative to improve the understanding of POC 
optical proxy algorithms by evaluating all aspects of variability for POC and optical measurements, and 
by assessing uncertainties in the proxy-derived POC concentrations. 
 
In order to address these issues, the "Multi-sensor, ecosystem-based approaches for estimation of 
particulate organic carbon" project goals are to: 

 Conduct an intensive field program (taking advantage of ship time and space provided by 
collaborators) that will allow us to collect data on hydrography, inherent optical properties 
(including polarized angular scattering), POC, suspended particulate matter (SPM), particle size 
distribution (PSD), HPLC pigments, and plankton size and carbon biomass from a dynamic range of 
ecosystem types. 

 Use best-practice POC and other biogeochemical parameter sampling and analysis protocols and use 
carefully calibrated (and inter-calibrated) optical instruments to constrain methodological sources of 
variability in both optical and POC measurements. 

 Use this extensive dataset to develop a multi-sensor, ecosystem-based remote sensing algorithm 
that will improve estimation of the oceanic POC pool, thereby allowing new insights into the 
dynamics of POC, as well as SPM and phytoplankton carbon biomass, in the surface ocean. 

 Evaluate the applicability of newly available remote sensing products such as Sea Surface Salinity 
(Aquarius/NASA) and polarized scattering measurements (PARASOL/CNES, future PACE and 
ACE/NASA) to improve retrieval of POC, and reduce uncertainty in its estimation.  
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Summary 

This study examines the seasonal and regional variability in the spectral absorption coefficients of 

phytoplankton (aφ), non‐algal particles (aNAP) and colored dissolved organic matters (aCDOM) in the 

northern Gulf of Mexico (NGOM) using data collected during eight research cruises from 2008 to 2010 

and quasi analytical algorithm (QAA) derived MODIS (Moderate resolution Imaging Spectroradiometer) 

data. Significant differences in bio‐optical properties were observed. Seasonal fluctuations in river 

discharge, wind fields, wind driven transport and mixing processes explained majority of the observed 

variability. Comparisons between log‐ transformed in‐situ adg (λ) (aNAP+ aCDOM ) data and log‐

transformed QAA derived adg (λ) showed reasonable agreement with r2 values between 0.82‐0.99 while 

QAA retrievals for aφ (λ) were characterized by slightly lower r
2 values of 0.6‐0.7 

Introduction 

Application of remote sensing algorithms in coastal waters are particularly challenging because of their 

optically complexity. The NGOM influenced by Mississippi (MS) and Atchafalaya (ATF) rivers provide a 

clear example of a system largely dominated by Case 2 waters [1]. The main goal of this study was to be 

describe the variability of the bio‐optical properties in the region using both in‐situ and satellite derived 

data and to test the potential of the Quasi Analytical Algorithm [2] for the retrieval of absorption by 

phytoplankton, non‐algal particles and colored dissolved matter. 

Results and Discusssion 
 
In general QAA was able to capture the spatio‐temporal gradients but over‐estimated at the inner‐shelf 
regions and underestimated at the estuarine and offshore waters (Fig. 1). The results obtained for 
QAA_adg (low bias: ranged ± 0.04 ‐0.08) were better than QAA_aφ. Uncertainty estimates for QAA_adg  
was better at all wavelength. (Table not shown). QAA_ aφ retrievals were particularly poor at shorter 
wavelengths. 

Factors that affected the aφ (λ) estimates include variations related to phytoplankton 
pigmentation and package effects [3]. Large variability in pigment composition in the region might 
account for some of the variability in the relationship between satellite‐derived and in situ observations. 
Retrieval of Rrs at short wavelengths is particularly challenging in coastal waters given the high light 
attenuation and uncertainties in atmospheric corrections particularly at shorter wavelengths [4] Cloud 
cover and solar glint are additional factors that affects the accuracy of the satellite‐derived Rrs estimates 
and associated QAA retrievals. Finally, small scale spatial heterogeneity in distributions as well as rapidly 



changing conditions over the time window for matchups (± 24hrs) may have contributed to observed 
differences between the QAA‐derived products and in‐situ observations. 
 Besides choice of spectral slope value of adg can influence the performance of the QAA. Spectral 
slopes of CDOM (SCDOM)  and NAP (SNAP)are known to vary widely in continental margins [5]. The SCDOM 
values determined during this study 
ranged from 0.01‐0.022 nm‐1, while SNAP 
ranged from 0.005 ‐0.02 nm‐1. The QAA 
uses a standard spectral slope of 0.015 
nm‐1 for Sdg. Ideally in‐situ Sdg values 
should be used as it is difficult to 
accurately determine just from Rrs values 
[4]. Since aφ(λ) is calculated by 
subtraction of adg(λ) from a(λ), 
uncertainty in the spectral slope used in 
the QAA can be an additional source of 
error in aφ(λ) 
 
Conclusion  
The low uncertainty associated with the 

QAA_adg values are particularly promising 

and provides confidence to the 

quantitative use of satellite derived 

QAA_adg maps in NGOM. Repeated 

validation of QAA with in‐situ data and Rrs 

data from multi‐platform should be 

undertaken in future. The use of in‐situ 

Rrs to derive QAA products would provide 

much needed information to further 

investigate the uncertainty budget in the 

region and is thus recommended for future 

assessment of remote sensing algorithms 

and derived products in NGOM.  
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Figure 1.Scatter plot showing the comparison between log‐
transformed in‐situ adg and QAA retrieved adg (MODIS Aqua) 
at 412 (a), 443 (c), 531 (e) and similarly b,d and f shows the 
relationship between log‐transformed QAA derived aφ versus 
in‐situ aφ at 412 (b), 443(d) and 531(f). 
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Summary 

The International Working Group for PFT Algorithm Development aims to establish an in situ dataset 
specifically for the calibration and validation of PFT algorithms. The dataset will include multiple 
coincident parameters such as HPLC pigments (including size fractionated pigments where available), 
flow cytometry, microscopic cell counts, particle size and in‐water optical measurements from both the 
northern and southern hemispheres. It is envisaged that the first version of this dataset will be publically 
available in 2014. 

Introduction 

Since the launch of SeaWiFS, in 1997, satellite‐retrieved estimates of chlorophyll‐a (chl‐a) have been 
used as a proxy for phytoplankton biomass. The unprecedented spatial and temporal coverage of 
satellite‐generated products, such as chl‐a, has enhanced our knowledge of trends in productivity and 
extended our understanding of biogeochemical processes, on both regional and global scales. However 
in recent years researchers have required greater detail about the phytoplankton community 
composition responsible for the productivity and whether the phytoplankton community consisted of 
taxonomic groups with specific functions, such as silicification, calcification and nitrogen fixation. 
Phytoplankton with these functions have been termed Phytoplankton Functional Types (PFTs) and in 
response to the requirement for greater detail about the phytoplankton community composition, PFT 
algorithms have been developed. Some of the algorithms generate estimates of phytoplankton 
composition by determining size structure while others estimate taxonomic groupings. At present it is 
difficult to compare the outputs of PFT algorithms as each algorithm has used an individual input 
dataset. 

It is the intention of the International Working Group for PFT Algorithm Development to establish an in 
situ dataset specifically for the calibration and validation of PFT algorithms. The dataset will include 



multiple coincident parameters such as HPLC pigments (including size fractionated pigments where 
available), flow cytometry, microscopic cell counts, particle size and in‐water optical measurements 
from both the northern and southern hemispheres. The availability of the dataset will allow better 
comparison of the outputs from different PFT algorithms and also allow validation of the algorithms 
over different regions. The Working Group acknowledge that databases and datasets such as SeaBASS 
and NOMAD (NASA) already exist, but believe that the PFT dataset with the added phytoplankton‐
specific parameters will only enhance the information available to researchers. 

Discussion 

Collection of in situ data from various investigators is underway, building on existing datasets (e.g. 
Hirata et al. 2011) and it is envisaged that by May 2013 the PFT dataset will contain substantial data 
from the southern hemisphere. This data will come from the Australian, South African, New Zealand and 
Southern Ocean regions. By mid‐year, data from the northern hemisphere will be added to the dataset. 

 

Fig. 1. In situ data used for the development of a global PFT algorithm by Hirata et al. (2011). 
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Summary 

MODIS derived aerosol optical depth (AOD) and chlorophyll (Chl) and were compared with in situ AERONET and 

extracted chlorophyll, respectively, and weekly binned for deriding bloom metrics for the Strait of Georgia (SOG), 

an optically complex estuarine environment on the West Coast of Canada. A total of 101 images were considered 

in the evaluation of the atmospheric strategies: (1) the management unit of the North Sea mathematical models 

(MUMM) with SWIR band, (2) the fixed Angstrom coefficient derived from AERONET, and (3) the standard NIR 

approach. In the next step, the sensor derived chlorophyll estimates were determined using the OC3M model and 

compared with extracted chlorophyll acquired within 24 hrs, 6hrs, and 2 hrs on imagery acquisition. The results 

showed indicated that the MUMM+SWIR (r
2
= 0.6-0.7; average slope ~1.1; RMSE443nm= 0.7% and RMSE869nm= 0.9% 

compared with in situ AERONET AOD) and the MUMM+SWIR and OC3M chlorophyll (24hrs: n=42, r
2
=0.4, and 

slope=0.6; 6hrs: n=21, r
2
=0.6, and slope=0.9; and 2hrs: n=11, r

2
=0.7, and slope=1.1 compared with in situ 

chlorophyll) resulted in the best estimates of chlorophyll. These products were further weekly binned and bloom 

metrics derived.  

Introduction 

Fraser River salmon, specifically sockeye, are one of the most important fisheries for the British 

Columbia commercial and recreational fishing sectors. However, the stocks have experienced variations 

of return rates in the past 50 years, and a general decline in the past decade, thus adding several 

uncertainties in the management of this valuable resource [1].  Return rate variability of Fraser sockeye 

have been attributed to several factors, including oceanographic variability in the Strait of Georgia (SoG) 

[2] such as zooplankton availability, which is to a certain extent groups related to the phytoplankton 

bloom conditions in the SoG [3]. As such, the important role of the spring bloom on the survival of 

juvenile salmon has been hypothesized [1]. The objective of this work is to define the appropriate 

method to determine phytoplankton bloom metrics (initiation, amplitude, and duration) in the SoG 

based on MODIS imagery.  The first step is the validation of the atmospheric correction strategy; second 

step the validation of the estimated chlorophyll model; and third, the binning of imagery and generation 

of temporal bloom metrics.  

 

Results and Discussion 

Image data (level 1a) were accessed from NASA’s OceanColor web portal, and processed in SeaDAS 

(Seawifs Data Analysis System) environment. All available MODIS-Aqua images (n=465, 2007, 2008, and 

2012) were processed. In the first step, a total of 101 images were considered in the evaluation of three 

different atmospheric strategies: (1) the management unit of the North Sea mathematical models 

(MUMM) with SWIR band, (2) the fixed Angstrom coefficient derived from AERONET, and (3) the 

standard NIR approach. The results showed significant agreement between in situ AERONET AOD at 

visible and near-infra red wavelengths and MODIS derived AOD for the different atmospheric 



approaches: MUMM+SWIR (r2= 0.6-0.7; average slope ~1.1; RMSE443nm= 0.7% and RMSE869nm= 0.9%); 

fixed Angstrom (r2= 0.7-0.8; average slope ~1.3; RMSE443nm= 1.3% and RMSE869nm= 0.8%); and standard 

NIR (r2= 0.7-0.8; average slope ~1.1; RMSE443nm= 1.2% and RMSE869nm= 0.6%). 

 In the second step, the sensor derived Chl estimates were determined using the OC3M model 

[4] and compared with extracted chlorophyll acquired within 24 hrs, 6hrs, and 2 hrs on imagery 

acquisition. The results indicated that the MUMM+SWIR and OC3M Chl resulted in the best estimates 

when compared with in situ data acquired within 2 hrs of imagery acquisition (24hrs: n=42, r2=0.4, and 

slope=0.6; 6hrs: n=21, r2=0.6, and slope=0.9; and 2hrs: n=11, r2=0.7, and slope=1.1) compared with the 

NIR and OC3M approach (24hrs: n=48, r2=0.12, slope=0.8; 6hrs: n=23; r2=0.4, and slope=0.9; 2hrs: n=12, 

r2=0.6, slope=0.6). There were no images corrected with the fixed Angstrom coefficient coincident with 

in situ data acquisition, thus highlighting the issue of needing AERONET data to guide the atmospheric 

correction step. 

 After the previous evaluation, the MUMN+SWIR and OC3M Chl derived images were spatially 

binned and finally temporally binned to derive mean ‘weekly’ Chl concentrations. Mean weekly Chl 

values were collected for a central region the south SoG.  The number of available binned (weekly) 

images were 20 (2007); 19 (2008); 21 (2012). In order to derive bloom dynamics that help describe 

underlying physical and biological forcing, a set of objective metrics were derived based on a shifted 

Gaussian function of time fitted to the time-series of binned weekly imagery mean chl concentrations 

[5]. The earliest timing of initiation (week 6.6 – mid February) was defined in 2008. This is much earlier 

than 2007 and 2012 years, 12.0 (~end March) and 12.9 (~beginning of April) week, respectively. Further, 

2007 and 2012 are also similar in regard to week of maxima observed Chl (~week 15) and maximum 

observed concentrations (~16.0 mg m-3). Much lower maximum Chl were determined in 2008 (3.4 mg 

m-3) but for a long duration (~ 10 weeks). The determined week of initiation of bloom conditions in 2012 

was beginning of April. Our methods further defined that the 2012 maximum Chl was approximately 

16.0 mg m-3 and the bloom last for about 4 weeks. Determining inter-annual relationships between the 

timing/magnitude/duration of the spring bloom and the residence/condition of juvenile salmon entering 

from lotic systems may be paramount for ecological based fisheries management. Our approach applied 

to a 10 years time series of data will help to understand these relationships.  
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Summary(
A"statistically"based"model," trained"using"regional"data,"accurately"derives"chlorophyll"a" concentration"
and"various"inherent"optical"properties"(IOPs)"from"in$situ"measurements"of"remote"sensing"reflectance"

in"the"waters"of"Big"Bend,"FL,"USA"–"an"area"where"conventional"approaches"often"yield"poor"results"due"

to" optical" complexity" (high" CDOM" absorption," bottom" reflectance)" and" challenges" in" achieving"

atmospheric"correction."The"approach"is"also"successfully"applied"to"MODIS"data,"and,"despite"imperfect"

atmospheric" correction," successfully" derives" accurate" estimates" of" chlorophyll" a" and" IOPs." Results"
indicate" the" potential" of" the" approach" to" derive" important" biogeochemical" parameters" from" ocean"

colour"under"very"challenging"conditions"in"this"ecologically"and"commercially"important"coastal"region."

(
Introduction(
Big"Bend,"Florida,"USA"is"an"area"of"both"commercial"and"ecological"importance"and"is"home"to"several"

large"fisheries,"seagrass"habitat"and"popular"tourist"destinations."Measurement"of"ocean"colour"offers"a"

powerful"means"to"achieve"such"monitoring"and"can"capture"synoptic"patterns"in"biological"and"physical"

processes" at" various" temporal" and" spatial" scales." However," accurate" retrieval" of" proxies" for" these"

processes" (e.g." chlorophyll" a" concentration" or" backscattering" coefficient)" from" ocean" colour" is" often"

challenging"in"this"region"due"to"the"non"coMvarying"nature"of"the"optically"active"water"constituents"and"

to" the" difficulty" in" achieving" accurate" atmospheric" correction." Here" we" present" a" region" specific,"

statistical"approach
1
"for"deriving"inherent"optical"properties"(IOPs)"and"chlorophyll"a"concentration"from"

measurements" of" ocean" colour" around" the" Big" Bend" region" of" FL," USA."We" first" show" results" for" an"

extensive"in$situ"dataset,"then"use"the"same"approach"for"MODIS"measurements"of"the"study"area."

" The"algorithm"of"Craig"et$al.1"was"used"to"derive"chlorophyll"a"concentration"(Chl$a;"mg"m
M3
)"and"

IOPs"from"in$situ"measurements"of"remote"sensing"reflectance"(Rrs(λ);"srM1)."This"is"a"statistical"approach"
that"uses"empirical"orthogonal"function"(EOF)"analysis"to"identify"the"dominant"modes"of"variance"in"the"

shape" of" Rrs(λ)" spectra" and" then"
builds" a" model" based" on" the"

relationship" of" the" EOF" modes"

with" either" Chl$ a" or" IOPs." The"
model" was" trained" using" a" subset"

(70%)" of" an" extensive" in$ situ"
radiometric" and" water" sample"

dataset"that"covered"various"water"

types" including" those" dominated"

by" coloured" dissolved" organic"

material" (CDOM)" absorption" and"

those" influenced" by" bottom"

reflection." The" model" was" then"

tested" on" the" remaining" 30%" of"

the" dataset." Following"
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Fig.$1.$Training,$test$and$comparison$of$EOF$models.$Fmed$is$a$metric$of$bias:$
1$=$no$bias,$2$=$model$overestimates$x2,$0.5$=$model$underestimates$x2$



implementation"of"the"model"on"the"in$situ"data,"the"approach"was"also"tested"on"MODIS"imagery"of"the"

same"region."

Discussion(
Training"and" test" results" for" the"model" for"Chl$a,"phytoplankton"absorption"at"443"nm" (aph(443);"mM1

),"

detrital"and"CDOM"absorption"at"443"nm"(acdm(443);"mM1
),"total"absorption"at"488"nm"(atot(488);"mM1

)"and"

particulate"backscattering"at"700"nm"(bbp(700);"mM1
)"are"shown"in"Fig."1,"rows"1M2."The"models"performed"

very"well,"especially" in"deriving"absorption"coefficients."Many"of" the"spectra"were"obtained" from"sites"

where"CDOM"absorption" comprised"up" to"80%"of" total" absorption"or"where"Rrs(λ)" spectral" shape"was"
significantly" modified" by" bottom" reflectance," showing" the" ability" of" the" EOF" approach" to" accurately"

detect" very" small" variations" in" spectral" shape" that" may" otherwise" be" ‘swamped’" by" more" dominant"

signals."Test"results"showed"only"a"modest"decrease"in"modest"skill,"suggesting"that"the"model"had"been"

adequately" trained."For"comparison,"Chl$a"derived"using" the"OC3"algorithm2
"and" IOPs"using" the"quasiM

analytical"algorithm"(QAA)
3
"are"shown"in"Fig."1,"row"3."It"should"be"pointed"out"that"the"EOF"algorithm"is"

trained" using" regional" data," whereas" both" the" OC3" and" QAA" algorithms" are" global" models." It" is" not"

unexpected," therefore," that" our" model" performed" better." However," what" we" present" here" is" the"

application"of"a"generic$approach"that"is"computationally"inexpensive,"straightforward"to"apply"and"that"

can" be" applied" in" any" instance" in" which" a" modestly" sized
1
" radiometric" and" corresponding" validation"

dataset"is"available.(
" The"models" derived" from" the" in$ situ" data" were"
then"applied"to"MODIS"Rrs(λ)" from"the"same"region,"but"

Chl$a"and"IOP"estimates"were"poor."Upon"comparison"of"

MODIS"Rrs(λ)"with"match"up" in$situ"Rrs(λ)," it"was"evident"
that" inadequate" atmospheric" correction" was" likely"

deforming" the" spectral" shape,"meaning" that" the"model"

coefficients" derived" from" the" in$ situ" data" were" not"
appropriate."It"was"decided,"therefore,"to"train"a"new"set"

of"models"using"only"MODIS"Rrs(λ)"in"order"to"account"for"

the"deformation"of" the" spectral" shape,"especially" in" the"

blue." The" MODIS" dataset" was" split" into" 60:40"

training:test" subsets" and" the" results" are" shown" in" Fig." 2." atot(488)" and" acdm(443)" are" estimated"most"

accurately,"and" in"general,"model"skill" is"comparable"to"the" in$situ"models"(Fig."1)."Only"33"data"points"

were"available"for"the"training"and"testing"procedures,"but"these"initial"results"are"very"encouraging"and"

suggest" that" accurate" estimates" of" biogeochemical" parameters" in" this" optically" complex" site" can" be"

derived"even"under"conditions"of"imperfect"atmospheric"correction."This"is"a"significant"finding,"indeed,"

and" underscores" the" ability" of" the" EOF" approach" to" ‘tease" out’" spectral" signatures" of" optically" active"

water"constituents"from"imperfectly"atmospherically"corrected"satellite"data."

Conclusions(
A"statistically"based,"computationally"inexpensive,"regional"model"accurately"estimates"Chl$a"and"various"
IOPs" from" both" in$ situ" and" satellite"measurements" of" Rrs(λ)" from" very" optically" complex" waters." The"

model"performs"very"well"despite"modification"of"Rrs(λ)"spectral"shapes"from"high"CDOM"concentration,"

bottom"reflectance"and"imperfect"atmospheric"correction,"pointing"strongly"to"its"potential"as"a"valuable"

tool"in"coastal"ocean"colour"applications."
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Introduction 

 

The Baltic Sea is of great importance to the countries surrounding it and its ecosystem is evolving as a 

result of human activities. This requires a regular monitoring of environmental processes in the Baltic Sea 

which, together with in situ analysis at selected sites and times, can only be effective with the 

implementation of remote sensing technology. 

To meet these needs, a consortium of four Polish research institutions execute in years 2010 - 2014 the 

SatBałtyk project [1]. The project is aiming to prepare a technical infrastructure and set in motion 

operational procedures for the satellite monitoring of the Baltic ecosystem. The system will deliver on a 

routine basis the variety of structural and functional properties of this sea, based on data provided by 

relevant satellites and supported by hydro-biological models. Among them: the solar radiation influx to 

the sea’s waters in various spectral intervals, energy balances of the short- and long-wave radiation at 

the Baltic Sea surface and in the upper layers of the atmosphere over the Baltic, sea surface temperature 

distribution, dynamic states of the water surface, concentrations of chlorophyll a and other 

phytoplankton pigments in the Baltic water, distributions of algal blooms, the occurrence of upwelling 

events, and the characteristics of primary organic matter production and photosynthetically released 

oxygen in the water and many others. It is also intended to develop and, where feasible, to implement 

satellite techniques for detecting slicks of petroleum derivatives and other compounds, evaluating the 

state of the sea’s ice cover, and forecasting the hazards from current and future storms and providing 

evidence of their effects in the Baltic coastal zone.  

 

Discussion  

 

The satellite component of the SatBaltic operational system is based on the most efficient of the 

available modern algorithms applicable to the Baltic Sea, most of them developed within DESAMBEM 

project carried out in Poland in years 2001- 2005 [2,3]. Due to high cloudiness typical over the Baltic, 

which partially or wholly precludes the use of satellite sensors for remote sensing of the water 

properties based on DESAMBEM algorithms, the system has to be supplemented by the component, 

which provides reliable data in these situations. The most rational means of providing such a  data is to 

use data generated by prognostic ecohydrodynamic models. The development and implementation of a 

packet of prognostic models together with procedures for assimilating satellite data are the second  

component of the system (see Figure). 

To secure the highest quality of data delivered by SatBaltic system, also the development and 

implementation of methods for the continuous calibration of the system (systematic measurements 

from research vessels, platforms and sea buoys) is also carried out within the Project. 

Only when all above described system components are developed and synchronized, the SatBaltic 

operational system will be launched. The system, designed and equipped with appropriate procedures 

for the continuous spatial and temporal monitoring of the main structural and functional characteristics 



of the entire Baltic Sea, and not just of instantaneous and local situations from the very restricted study 

areas accessible from ships and buoys or from often limited by clouds the satellite data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure illustrates the main components of 

the SatBaltic operational system. The 

system consists of two independent but 

coordinating subsystems: the DESAMBEM 

Diagnostic System and the Baltic 

Forecasting System (BALTFOS). 
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Summary	
  
	
  
The	
   atmospheric	
   correction	
   for	
   ocean	
   color	
   requires	
   very	
   accurate	
   computations	
   of	
   the	
  
scattering	
   by	
   aerosols	
   and	
  molecules.	
   This	
   is	
   usually	
   done	
   assuming	
   an	
   infinite	
   plane	
   parallel	
  
atmosphere.	
   In	
   order	
   to	
   evaluate	
   the	
   errors	
   due	
   to	
   this	
   approximation,	
  we	
  have	
  developed	
   a	
  
radiative	
  transfer	
  code	
  for	
  a	
  spherical	
  atmosphere.	
  The	
  results	
  of	
  the	
  computations	
  by	
  the	
  two	
  
codes,	
   plane	
   parallel	
   and	
   spherical,	
   both	
   of	
   them	
   using	
   a	
   Monte	
   Carlo	
   method,	
   have	
   been	
  
compared.	
   The	
   relative	
   error	
   between	
   the	
   two	
   computations	
   remains	
   below	
   1	
   %	
   up	
   to	
   an	
  
incidence	
  angle	
  of	
  about	
  xxx°	
  above	
  which	
   it	
   is	
  necessary	
   to	
  use	
   the	
  spherical	
  atmosphere	
   for	
  
atmospheric	
  correction.	
  Nevertheless,	
  even	
  at	
  nadir,	
  the	
  error	
  is	
  significant	
  enough	
  to	
  suggest	
  to	
  
systematically	
  computing	
  the	
  atmospheric	
  scattering	
  of	
  a	
  spherical	
  atmosphere	
  for	
  atmospheric	
  
correction	
  of	
  ocean	
  color.	
  
	
  
Atmospheric	
  scattering	
  for	
  a	
  spherical	
  atmosphere	
  –	
  Monte	
  Carlo	
  Code	
  
	
  
Calculations	
  are	
  performed	
  with	
  a	
  Monte	
  Carlo	
  radiative	
  transfer	
  code	
  used	
  in	
  backward	
  mode.	
  
It	
   includes	
   polarization,	
   a	
   rough	
   sea	
   surface,	
   Rayleigh	
   scattering,	
   aerosols	
   and	
   gaseous	
  
absorption.	
  The	
  atmosphere	
   is	
   vertically	
  extended	
  up	
   to	
  100	
  km	
  altitude	
   to	
   take	
   into	
  account	
  
high-­‐level	
  molecules.	
  
	
  
Comparison	
  of	
  the	
  spherical	
  and	
  plane	
  parallel	
  results	
  
	
  
Figure	
   1	
   shows	
   a	
   comparison	
   between	
   results	
   for	
   plane	
   parallel	
   and	
   spherical	
  
atmosphere.	
   It	
   is	
   actually	
   the	
   ration	
   of	
   the	
   two	
   computations	
   so	
   that	
   a	
   one	
   value	
  
means	
   no	
   error.	
   The	
   relative	
   error	
   increases	
   with	
   the	
   wavelength,	
   but	
   remains	
  
critical	
   at	
   the	
   shorter	
   wavelengths	
   where	
   the	
   molecular	
   scattering	
   is	
   important.	
  
Most	
  of	
  the	
  effect	
  comes	
  from	
  the	
  scatterers	
  at	
  the	
  highest	
  altitude	
  Adding	
  aerosol	
  
with	
   a	
   lower	
   altitude	
   profile	
   does	
   not	
   change	
   much	
   these	
   results.	
   The	
   errors	
  
increases	
   rapidly	
   at	
   viewing	
   and	
   solar	
   zenith	
   angles	
   above	
   60	
   °,	
   so	
   that	
   spherical	
  
calculations	
  are	
  strictly	
  necessary	
  for	
  ocean	
  color	
  observations	
  at	
  high	
  latitudes	
  or	
  
with	
   a	
   large	
   swath.	
   For	
  nadir	
   observations,	
   the	
   error	
  may	
   still	
   be	
  within	
  1	
  %	
  and	
  
using	
  the	
  computations	
  for	
  a	
  spherical	
  atmosphere	
  is	
  recommended.	
  	
  
	
  



	
  
	
  
Figure	
   1:	
   Wavelength	
   dependence	
   of	
   the	
   ration	
   of	
   plane	
   parallel	
   (PPA)	
   to	
   spherical	
   (SSA)	
   atmospheric	
  
scatterings.	
  
	
  
Discussion	
  
	
  
Our	
  results	
  show	
  a	
  larger	
  effect	
  of	
  the	
  sphericity	
  of	
  the	
  atmosphere,	
  contrary	
  to	
  a	
  previous	
  study	
  
[1]	
   that	
   misses	
   part	
   of	
   the	
   effect	
   by	
   using	
   a	
   molecular	
   layer	
   limited	
   to	
   a	
   8	
   km	
   altitude.	
  We	
  
recommend	
  that	
  advanced	
  atmospheric	
  corrections	
  make	
  a	
  systematic	
  use	
  of	
  computations	
  of	
  
atmospheric	
  scattering	
  with	
  a	
  realistic	
  spherical	
  atmosphere,	
   in	
  particular	
  when	
  having	
  a	
  wide	
  
swath	
  and	
  large	
  incidence	
  angles	
  (VIIRS,	
  geostationary)	
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Summary

Optical properties of coastal waters are characterized in many cases by a large number of different water  
constituents, including different phytoplankton species, mineralic and organic particles and dissolved 
matter  such as humic substances. This large variety together with the impact of the atmosphere makes 
it difficult to determine inherent optical properties (IOPs) and the concentration of water constituents 
from reflectance spectra with an uniform quality. Sensitivity analysis of different constellations of water  
constituents, demonstrate that the uncertainties can be so large that the data become useless. To take  
these problems into account, we have developed a system of algorithms, which allows us to estimate the  
uncertainty and also to identify reflectance spectra, which are out of scope of the retrieval algorithm. 

Introduction

Top  of  atmosphere  radiance  or  reflectance 
spectra  of  coastal  waters  are  determined  by  a 
large  number  of  factors.  Even  in  case  1  water, 
which is defined as water, the optical properties 
of  which  can  be  described  by  only  one 
component,  i.e.  phytoplankton,  uncertainties 
occur already due to the variability of the optical 
properties of phytoplankton [1, 2]. On the other 
hand, the information content of spectra in most 
cases is limited to a few (2-3) components, which 
can  be  derived  with  sufficient  accuracy.  The 
nature of  these components may vary with the 
optical  water  type  and  depends  on  the 
dominating  water  constituents,  aerosols,   thin 
clouds  etc.,  s.  figure  1.  Furthermore,  the 
importance  of  spectral  bands  changes  with 
optical  water  types.   Different  algorithms  or 
systems of  algorithms exist,  to  decompose reflectance spectra  [3,  4],  which partly  include  also the 
determination of uncertainties [5].

Discussion

The large number of factors, which determine top of atmosphere (TOA) and water reflectances of some  

A large number of factors determine TOA radiance 
spectra, here of the North Sea. On the other side, these 
spectra are rather similar and the information content is 
much smaller, than the number of factors, which 
determine the spectra.
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types of coastal waters imply issues and uncertainties when we derive water reflectances from TOA 
reflectances and, in turn, IOPs from water reflectances.  Uncertainties can be large for components,  
which  are  sub-dominant  and  thus  above  the  acceptance  level.  In  particular  high  concentrations  of  
suspended matter  may  totally  mask  the  effect  of  other  substances  on  reflectance  spectra,  such  as 
phytoplankton. In these cases the uncertainty can easily surmount a factor of 2 or even 10. User of such  
data without any warning can easily be misleaded. In extreme cases also the atmospheric correction may  
lead to large uncertainties in water reflectances or may even fail. Sensitivity studies within the ESA Water  
Radiance project have demonstrated that the determination of the uncertainty range is crucial for the 
use of remote sensing data of coastal waters. Thus, it is necessary to determine these uncertainties on a  
pixel  by  pixel  bases.  For  this  purpose a system of  algorithms has  been developed (1)  to check if  a  
reflectance spectrum is within the scope of the algorithm, and (2) to determine the uncertainty range. 
This system is based on neural networks [6], which have been trained using a case 2 water  bio-optical 
model and radiative transfer simulations [7] for water and atmosphere.

Conclusions

Uncertainties of IOPs and concentrations of coastal water constituents, when derived from reflectance 
spectra, can be variable and large so that products such as concentration maps of coastal waters 
provided from data of earth observing satellites, should be complemented by co-registered maps of 
uncertainties and flags, which indicates out of scope conditions. 
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Summary 
Ocean color remote sensing has shown to be a useful tool to map turbidity (T) and total suspended 
sediment (TSM) concentration in turbid coastal waters. Different algorithms to retrieve T and TSM from 
water reflectance already exist. However there are important questions as to whether these algorithms 
need to be calibrated specifically for different regions. In the present work we use a set of 180 
simultaneous measurements of water reflectance and turbidity in five different highly turbid regions to 
validate a single band algorithm using the near infrared (NIR) band at 859 nm. The good performance of 
the algorithm for all these regions, despite different sediment characteristics, suggests the global 
applicability of the algorithm to map turbidity within a certain range. 

Introduction 
Suspended particles modify the transmission of light under water affecting the biological productivity 
and underwater visibility as well as pollutant and nutrient transport. Turbidity (T), defined from the 
measurement of 90° scattered light at 860nm, is a relevant optical parameter for certain water quality 
applications, like water transparency. It is relatively cheap and easy to measure, and is highly correlated 
to the total suspended sediment (TSM) concentration (which is more expensive and time consuming to 
measure), making it an interesting parameter to retrieve from optical remote sensing. Even though 
many regional algorithms to estimate T and TSM have been already developed [e.g. 1, 2], the generality 
of these algorithms for remotely estimating sediment concentrations and/or turbidity is currently not 
established because of possible regional variation of specific optical properties.  
In a previous work, a single band turbidity algorithm [1] using reflectance at 859 nm was re-calibrated 
using in situ T and reflectance measurements performed in the Southern North Sea (SNS) and the 
Scheldt River (SR) with T values higher than 10 FNU [3]. The algorithm was applied to MODIS satellite-
retrieved Rayleigh-corrected reflectance data in the Samborombón Bay region (located to the south of 
Río de la Plata River, Argentina) and validated with in situ T measurements. A good agreement between 
modelled and in situ measurements was found, but no in situ water reflectance measurements were 
available to directly validate the algorithm. The objective of the present study is to validate the single 
band algorithm and test its generality using water reflectance and turbidity measurements performed in 
five different turbid regions of the world: the Southern North Sea (SNS), French Guyana (FG), and the 
Scheldt (SC, in Belgium), Gironde (GIR, in France), Río de la Plata (RP in Argentina) rivers; these regions 
have quite different sediment composition (refractive index, density) and range of concentrations.  

Discussion 
Turbidity measured in the five regions covered a wide range of values, from 10 to 900 FNU (Formazin 
Nephelometric Units). Good performance of the algorithm was found with correlations > 0.75 for each 
site and a higher correlation (r=0.96, p<0.00001) for all sites together (Figure 1). 

 



 
Fig. 1: In situ water reflectance and T values measured for various regions (see text for abbreviations) and the 

single band model validated in the present study (solid line) 
 
Even though the algorithm was calibrated with a dataset from two specific regions (SNS and SC), it 
showed good performance in all five regions analyzed here, suggesting the general applicability of the 
algorithm for coastal/estuarine waters with this turbidity range. 

Conclusions 
A single band algorithm [1, 2] using 859nm was validated using in situ turbidity and reflectance 
measurements from five different turbid water regions. A good agreement between modelled and in 
situ measurements was found. These results suggest that a general algorithm can be used for mapping 
turbidity using NIR bands present in different ocean colour satellites such as MODIS, MERIS, SeaWIFS, 
GOCI, OLCI, HIOC, etc provided atmospheric correction is possible. The impact of the regional variability 
of the relationship between T and w859 is expected to be low because: a) unlike TSM, T is an optical 
property closely related to the side/backscattering processes affecting w859, b) w859 is hardly 
affected by particulate absorption which may vary significantly between regions.  The main limitation of 
this algorithm will be related to the range of T rather than geographic region or particle type. TSM 
concentration, the parameter of main interest in sediment transport studies, could subsequently be 
retrieved by ocean colour remote sensing if a region-specific relation between T and TSM is known. 
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The Sentinel‐3 mission objectives encompass the commitment to consistent, long‐term collection and 
operational provision of remotely sensed marine and land data, to measure sea surface topography, 
sea/land surface temperature and ocean/land surface colour in support of ocean forecasting systems 
and for environmental and climate monitoring. 

The objective of this poster is to introduce the Sentinel‐3 Level 2 geophysical products generated from 
data acquired by the OLCI and SLSTR optical sensors, with a special focus on ocean color products and 
the algorithms used for products retrieval.  

An overview of the complete set of Sentinel‐3 optical sensors products and their characteristics will be 
also provided to offer a complete view of the “Sentinel‐3 Optical Products” that will be generated within 
the Sentinel‐3 Payload Data Ground Segment by the Sentinel‐3 Instrument Processing Facilities (IPFs) 
and disseminated to the users. 
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The inverse ocean color problem, i.e., the retrieval of marine reflectance from top-of-

atmosphere (TOA) reflectance, is examined in a Bayesian context. The solution is 

expressed as a probability distribution that measures the likelihood of encountering 

specific values of the marine reflectance given the observed TOA reflectance. This 

conditional distribution, the posterior distribution, allows the construction of reliable 

multi-dimensional confidence domains of the retrieved marine reflectance. The 

expectation and covariance of the posterior distribution are computed, which gives for 

each pixel an estimate of the marine reflectance and a measure of its uncertainty. The p-

value is also computed to identify situations for which forward model and observation are 

incompatible. Prior distributions of the forward model parameters that are suitable for use 

at the global scale, as well as a noise model, are determined. Numerical approximations 

of the expectation and covariance are defined and implemented. Performance is evaluated 

on simulated data, and the ill posed nature of the inverse problem is illustrated and 

discussed. The theoretical concepts and inverse models are applied to SeaWiFS imagery, 

and comparisons are made with estimates from the standard atmospheric correction 

algorithm and in situ measurements. Conclusions are given in terms of performance, 

robustness, and generalization. Regionalization of the inverse models is a natural 

development to improve retrieval accuracy, for example by including explicit knowledge 

of the space and time variability of atmospheric variables.  
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Summary 

The purpose of this study was to investigate and develop approaches to atmospheric correction, 

level-2 (L2) processing, and geo-location of HICO imagery for routine monitoring of shallow coastal 

water ecosystems. A total of nine HICO images, spanning November 2011 - August 2012, over the 

Shark Bay World Heritage Area, Western Australia, were examined. We have implemented a semi-

analytical shallow water inversion model to retrieve bathymetry and a two class benthic habitat 

map. Within this research, challenges regarding atmospheric correction of HICO imagery, tide 

correction of bathymetry products, and geo-location accuracy are discussed. 

 

Introduction 

The Hyperspectral Imager for the Coastal Ocean (HICO) is a prototype sensor, onboard the 

International Space Station, designed with the necessary specifications for the remote sensing of 

coastal marine environments [1]. HICO has a spatial resolution of 100 × 100 m with 87 contiguous 

spectral bands between 400-900 nm, which has the potential for the generation of improved shallow 

water remote sensing products such as bathymetry and benthic habitat maps. 

  

Bathymetry and benthic habitat maps are important not only for coastal resource managers, but 

also for research utilizing hydrodynamic models in which depth and benthic habitat type influence 

tide, currents, wave energy and consequently sediment/nutrient transportation mechanisms [2]. 

Furthermore, coastal resource managers and researchers often require ‘environmental baselines’ to 

assess the natural/seasonal variability in benthic habitat type(s) and bathymetry prior to 

industrial/commercial development or anthropogenic disturbances. This, however, requires routine 

monitoring of such products within coastal regions of interest. To date, there has been limited work 

reported on the routine monitoring of bathymetry and benthic habitats using standardized 

processing of satellite hyperspectral imagery.  

 

A case study showing the routine monitoring of HICO-derived bathymetry and benthic habitat maps 

is presented for the World Heritage Area of Shark Bay, Western Australia. In this study, the semi-

analytical shallow water inversion algorithm, BRUCE [3], was implemented to retrieve imagery of 

water column depth (bathymetry), inherent optical properties (IOPs) of the water column and the 

benthic albedos of sand and seagrass.  

 

Discussion and conclusion 

Several processing steps have been implemented that convert HICO L1B, calibrated radiances, to the 

desired bathymetry and benthic habitat map L2 products. Briefly, these steps include: (1) Tafkaa 6S 

[4] atmospheric correction to generate the above water remote sensing reflectances; (2) a per-pixel 

quality control that masks land, cloud and pixels that were over-corrected in step 1; (3) sunglint 

removal; (4) derivation of L2 products using the BRUCE model (Figure 1); (5) uncertainty propagation 

through the inversion model using the method proposed by Hedley et al. [5]; (6) Image smoothing 

and tide correction of the bathymetry product and; (7) Geo-referencing and manual geo-rectification 

using ground control points.  

 



 
Figure 1: HICO imagery of Shark Bay, Western Australia (central latitude/longitude 25.62°S/ 113.89 °E) on 01 

June 2012; (a) quasi-true color image; (b) derived bathymetry, and; (c) derived substrate classification of 

sand and seagrass and various proportions of these two classes. 

 

Preliminary results show relative changes through time between the two substrate classes (sand and 

seagrass). This may be attributed to seasonal variability in the proportion of seagrass present. 

However, further work is needed to assess if this variation is statistically significant above the 

uncertainty propagated through the BRUCE model. 

 

The routine monitoring of bathymetry of Shark Bay has also raised the following key issues: (1) 

Tafkaa 6S often overcorrects the atmospheric radiance signal, resulting in non-physical reflectance 

signatures in the blue and red portions of the spectrum. This overcorrection is particularly evident in 

HICO swaths captured during high solar zenith angles. Further work is needed to improve 

atmospheric correction; (2) Geo-referencing using the distributed geographic lookup tables does not 

generate the desired geospatial consistency through time. Analysis showed that clearly identifiable 

land features varied by approximately 1° in latitude and longitude across the HICO images. 

Additional geo-registration using distinct land features as ground control points improved the geo-

location. Based on analysis of image features, we estimate the geo-location accuracy has improved 

to within 100-300 m, and; (3) Tide correction proved challenging over shallow regions of Shark Bay 

where shallow water tidal harmonics are prevalent. The lack of water level height data prevented 

direct correction of these tidal influences, and thus an empirical image based tide correction 

technique was employed to correct all bathymetry images to a relative datum. 
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2009-10 El Niño events in the equatorial Pacific Ocean, Geophys. Res. Lett., 39, L10602, 
doi:10.1029/2012GL051103. 
 
El Niño-Southern Oscillation (ENSO) significantly influences atmospheric and ocean circulations in the 
Pacific Ocean, which in turn affect biological production and ecosystem characteristics. Much of our 
existing knowledge about the relationship between ENSO and biology is with respect to the classic El 
Niño (i.e., EP-El Niño), which has maximum warming in the eastern equatorial Pacific (EEP) (Fig. 1e). 
However, since the 1990s, there have been frequent occurrences of a new flavor of El Niño (i.e., CP-El 
Niño) that has maximum warming in the central equatorial Pacific (CEP) (Fig. 1f). The impact of the 
latter on biology is not well understood. Biophysical responses in the equatorial Pacific Ocean to the 
1997-98 and 2009-10 El Niño (i.e., the strongest EP- and CP-El Niño event in the last three decades) are 
analyzed using satellite observations and reanalysis products. Significant differences in chlorophyll-a 
(chl-a) are found between the two events associated with different patterns of anomalies for the physical 
variables (Fig. 1). An adjoint tracer analysis is used to examine the difference in the origin and pathway 
of water masses in the upper equatorial Pacific Ocean that control the difference in nutrient supply and 
thus chl-a.  
 

 
Fig. 1. November-December-January averaged anomalies of (a-b) chl-a, (c-d) sea surface height, (e-f) sea 
surface temperature, and (g-h) zonal ocean surface currents for the 1997-98 EP-El Niño and 2009-10 CP-
El Niño. Wind vector anomalies are overlaid on (a-f) and ocean surface current vector anomalies on (g-h). 
The black and red boxes denote the EEP (5°S-5°N, 170°W-90°W) and CEP (5°S-5°N, 160°E-170°W) 
regions. 
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Summary 

Polarized light in the oceans carries intrinsic information that can be utilized to estimate the optical and 
microphysical properties of the oceanic hydrosols. It is especially sensitive to the scattering coefficient, 
which  cannot  be  retrieved  from  the  unpolarized  light  used  in  current  ocean  color  remote  sensing 
algorithms.  Based  on  extensive  simulations  using  the  vector  radiative  transfer  program  RayXP,  the 
attenuation‐to‐absorption ratio (c/a), from which b  is readily computed,  is shown to be closely related 
to the DoLP. The relationship is investigated for the upwelling polarized light for several wavelengths in 
the  visible  part  of  the  spectrum,  for  a  complete  set  of  viewing  geometries,  and  for  varying  water 
compositions  including  open  ocean  and  coastal  waters.  A  large  dataset  of  Stokes  components  is 
collected for various water compositions, measured in the field with a hyper‐spectral and multi‐angular 
polarimeter for validation purposes. 

Introduction 

Light‐scattering properties of particles in the ocean and atmosphere have been extensively studied [1]. 
Taking  note  that  solar  radiation  is  initially  completely  unpolarized,  once  it  reaches  the  Earth's 
atmosphere,  scattering  events,  such  as  Rayleigh  (molecular)  and  particulate  scattering,  cause  it  to 
become partially polarized. Light exhibits, as a result of scattering, some degree of polarization (DoP) in 
different directions  and  this polarization  is directly  related  to  the  source of  the  radiation  and  to  the 
properties  of  the  scatterers.  Thus,  the  polarization  state  of  light  carries  information  about  the 
atmosphere‐ocean  system  (AOS)  that  can be utilized  for  remote  sensing of microphysical and optical 
properties of particulates including the oceanic hydrosols and it is sensitive to the scattering coefficient. 
Through  the  unpolarized  remote  sensing  reflectance  (Rrs),  the  classical  algorithms  can  only  estimate 
backscattering  coefficients  bb,  but  the  total  scattering  coefficient  b  could  be  retrieved  based  on  the 
characteristics of polarized light.  

Discussion 

Based on extensive simulations using the vector radiative transfer program RayXP, the attenuation‐to‐
absorption ratio (c/a), from which b is readily computed, is shown to be closely related to the degree of 
linear polarization  (DoLP). The  relationship  is  investigated  for  the upwelling polarized  light  for several 
wavelengths  in  the  visible  part  of  the  spectrum,  for  a  complete  set  of  viewing  geometries,  and  for 
varying concentrations of phytoplankton, non‐algal particles, and color dissolved organic matter (CDOM) 
in the aquatic environment that resembles coastal waters  (Case  II waters) [2]. Another dataset of bio‐
optical properties for open ocean (Case  I waters) that  includes only phytoplankton particles and  its bi‐
products has been ingested into the RayXP program to simulate the polarized radiance. It is shown, for 
Case  I and Case  II waters,  that  there  is an excellent correlation between  the DoLP and c/a  for a wide 
range of viewing geometries. That correlation is investigated theoretically using fitting techniques, which 
show  that  it  depends  not  only  on  the  general  composition  of  water  but  also  on  the  particle  size 



distribution  (PSD) of  the  (mainly non‐algal) particles  for Case  II waters according  to  the power  law  in 
Equation (1). 
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where  a  and  c  are  the  absorption  and  attenuation  coefficients,  respectively;  χ  and  γ  are  the  fitting 
coefficients  and  ξNAP  is  a  PSD  slope.  The  relationship  between  the  IOPs  (c/a  ratio)  and  the  DoLP  is 
parameterized as a power law as in Equation (1) with a good coefficient of determination R2 opening the 
possibility for an accurate retrieval technique of the c/a ratio and 
further attenuation and scattering coefficients.  

An interesting result is that the fits for both ξnap of 4.0 and 4.5 are 
similar  for  the  all  three wavelengths 440, 550  and 665nm  (only 
results for 665nm are shown in the figure). In coastal waters, the 
slope ξnap of PSD of NAP largely falls in the range of 4.0‐4.5, where 
these  particles  are  small  in  size.  Since  the  relationship  weakly 
depends on the PSD of chlorophyllic particles, a rough estimate of 
ξnap  to be  in  its  typical  range may not  induce  large errors  in,  for 
example,  retrieval  analysis. On  the  other  hand,  the  relationship 
between  the  DoLP  and  c/a  for  Case  I  waters  is  more  linear 
especially  at  the  550  nm  where  maximum  dependency  in 
relationship falls onto the optical properties of the phytoplankton 
particles.  At  the  blue  and  red  wavelengths,  the  relationship 
becomes more dependent on the optical properties of the water 
molecules  (Rayleigh  scattering  at  the  blue  and  high  water 
absorption at the red spectral region). 

Conclusions 

While  attenuation  and  scattering  coefficients  are  not  retrievable  from  the  scalar  reflectance 
measurements, a relationship between the degree of  linear polarization (DoLP) and the attenuation to 
absorption coefficients ratio  (c/a) has been  investigated using vector radiative transfer simulations for 
open  ocean  and  coastal  waters  for  conditions  just  below  and  above  the  air‐water  interface.  The 
parameterized  relationship  allows  the direct  retrieval of  the  scattering  coefficient b of  the hydrosols 
using polarimetric observations of  the ocean. A  large dataset of Stokes components  for various water 
compositions, measured in the field with a hyper‐spectral and multi‐angular polarimeter, then provides 
the opportunity to validate the parameterized relationship between DOLP and c/a. This study opens the 
possibility for the retrieval of additional inherent optical properties (IOPs) from air‐ or space‐borne DoLP 
measurements of the ocean. 
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Summary

ESA should make available a level 3 global MERIS FLH product, to provide new insight into productivity  
and blooms in  coastal  areas.    MODIS  ocean  colour  data,  including fluorescence,  are  made  widely 
available through the NASA Oceancolor and Giovanni web systems, but fluorescence does not appear to 
be widely used.  We show problems with the Giovanni fluorescence data that may partly explain this.  
For  fluorescence  imaging,  MERIS  has  the  technical  advantage  over  MODIS  of  better  band  placing 
(including the additional 709 nm band) and of higher spatial resolution (300m compared to 1000m).  
MERIS ocean colour data, including fluorescence, need to be made more easily available to encourage  
the work that needs to be done on FLH in preparation for OLCI.

Introduction

Both MERIS  and MODIS were designed to map chlorophyll  using  FLH (Fluorescence Line Height)  at  
wavelengths near 680 nm, as well as using the more standard green-to-blue ratio estimates based on 
measurements in the range 440 to 560 nm.  The standard green-to-blue product has proven inadequate 
in many coastal areas, and we believe FLH to be a viable alternative.  We have applied FLH in the coastal  
waters of Western Canada [1,2] and documented cases where FLH provides a superior result [3]. 

Discussion

We show here an example of the way fluorescence is made available by the Giovanni system developed  
and maintained by the NASA GES DISC, but note problems which probably contribute to its relative lack  
of use.  We conclude that MERIS data should be made available using tools of this type.  This applies to  
both  fluorescence  and  the  more  conventional  chlorophyll  products.   It  will  greatly  improve  global 
acceptance of OLCI data if such a system were tested and in place before launch of Sentinel 3

At present we notice two problems with Giovanni’s fluorescence data.  The first is the description of  
NFLH (Normalized Fluorescence Line Height) data as dimensionless.  The normalization applied here is to  
scale the signal up to the radiance that would be observed under zenith sun, on the assumption that 
fluorescence increases proportional to incident solar irradiance.  This will still have units of radiance.  
The second problem is the fact that the fluorescence data should not be normalized. The fluorescence 
data show that this is inappropriate (see Figure), and studies of the fluorescence mechanism [eg 4]  
confirm  this.   It  has  long  been  known  that  the  fluorescence  signal  tends  to  saturate  under  high  
insolation.  Data summarized in [4] support the conclusion that for all sun elevations over about 20 
degrees,  that is,  when insolation is  sufficient for  ocean colour satellites to produce reliable results,  
fluorescence  is  fully  stimulated,  and  the  fluorescence  signal  is  independent  of  the  value  of  solar 
irradiance.
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FLH values agree well with chlorophyll.  NFLH data show a spurious annual cycle

Conclusions

We are finding successful applications of FLH data and believe that with more users, more successes 
would appear.  We have found problems with the way fluorescence data are handled and believe that  
these  are  limiting  their  use.   We note  that  MERIS  data  are  not  distributed  using  a  simple,  widely  
accessible web tool similar to NASA Giovanni.  MERIS fluorescence data need to be made more widely  
available in this way.  It would greatly improve international acceptance of OLCI data if such a system  
were tested with MERIS fluorescence and other data, and in place before launch of Sentinel 3.
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Summary
In extremely turbid waters, the relation between water leaving reflectance (ρw(λ)) at 
two bands in the near infra-red (NIR) was shown to be well approximated by the 
polynomial  function suggested by Wang et al. [1] for the atmospheric correction 
(AC)  algorithm  of  GOCI.  Accordingly,  a  new  hybrid  MUMM  NIR-corrected  AC 
algorithm is developed consisting to replace the constant NIR reflectance ratio in 
the MUMM AC algorithm [2,3] by the polynomial function of Wang et al. [1]. Based 
on  a  sensitivity  study  we  conclude  that  the  hybrid  MUMM  NIR-corrected  AC 
algorithm results in improved ρw(λ) retrievals in turbid waters.

Introduction
The use of satellites to retrieve ρw(λ) requires effective removal of the atmospheric 
signal. This can be performed by extrapolating the aerosol optical properties to the 
visible from the NIR spectral region assuming that seawater is totally absorbent in 
this latter part of the spectrum, the so-called black pixel assumption. However, in 
turbid waters the scattering and absorption of coloured dissolved organic matter 
and  non-algal  particles result  in  non-zero  ρw(NIR).  To  extent  the  black  pixel 
assumption AC algorithm, Ruddick et al. [2, 3] assumed a constant reflectance ratio,  
α(λNIR1,λNIR2), and spatial homogeneity in aerosol reflectance.  Recently, Wang et al. 
[1]  suggested  a NIR-corrected  AC  algorithm  for  GOCI  retrieving ρw(λ)  at  two 
wavelengths  in  the  NIR and including  a  polynomial  function  relating ρw(λNIR1)  to 
ρw(λNIR2).

The polynomial function and the constant α(λNIR1,λNIR2), suggested by Wang et al. [1] 
and Ruddick et al. [3], respectively, are validated with 131 highly accurate in situ 
ρw(λ) data. Next, a study is conducted to evaluate the sensitivity of the AC algorithm 
to the NIR marine reflectance model.  In situ ρw(λ) are therefore combined with a 
simplified power law model for aerosol reflectance. With the assumption that only 
single scattering occurs and that the diffuse atmospheric transmittance is equal to 
1, we compute the Rayleigh corrected reflectance. The latter is than inverted using 
the AC algorithms to give the retrieved ρw(λ), which for a perfect model should be 
equal to the in situ ρw(λ). According to the results of the sensitivity test, a new AC 
algorithm is suggested to provide satisfactory ρw(λ) retrievals over moderately, very 
and extremely turbid waters. 

Discussion
The  validation  exercise  shows  that  the  polynomial  function  relating  ρw(748)  to 
ρw(869) [1] has a larger validity range compared to  the constant reflectance ratio 
α(748,869)  [3].  However, when evaluating the sensitivity of the AC algorithms to 
the NIR marine reflectance models, we observe that the NIR-corrected AC algorithm 
largely  overestimate  ρw(λ)  at  all  wavelengths  and  for  all  water  types  (median 
difference between in situ and retrieved ρw(λ) ranging between 0.001 and 0.01, Fig. 
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1  (a-c)).  With  the  MUMM AC algorithm and  provided  that  the  aerosol  model  is 
correctly  retrieved,  for  moderate  to  very  turbid  waters  the  difference  between 
observed and retrieved ρw(λ) remains very small (median difference < -0.0001, Fig. 
1 (a,b)). In contrast, for extremely turbid waters, ρw(λ) are underestimated with a 
median difference between in situ and retrieved ρw(λ) of about -0.003 (Fig. 1 (c)). 
Including an error of 40% on the angstrom coefficient for the selection of the aerosol 
model results in larger errors on the ρw(λ) retrievals (not shown here). However, 
these ρw(λ) retrievals are still closer to ground truth compared to the NIR corrected 
AC retrieved ρw(λ) values. 
To improve ρw(λ) retrievals in extremely turbid waters, a hybrid MUMM NIR-corrected 
AC algorithm is suggested consisting to replace the constant NIR reflectance ratio in 
the MUMM AC algorithm [2,3] by the polynomial function of Wang et al. [1]. Indeed, 
this AC algorithm yields in median differences between retrieved and in situ  ρw(λ) 
below 0.001 in extremely turbid waters (Fig. 1 (c)). Nonetheless,  for ρw(NIR) above 
0.05,  the hybrid MUMM NIR corrected AC algorithm still  retrieves negative ρw(λ) 
values in the blue suggesting a refinement of the polynomial function. 

Conclusion
To improve ρw(λ) retrievals 
in extremely turbid waters 
the  constant  NIR 
reflectance  ratio 
suggested  by  Ruddick  et 
al. [2,3] for the MUMM AC 
algorithm  is  replaced  by 
the  polynomial  function 
used  within  the  NIR-
corrected AC algorithm of 
GOCI [1]. Future work will 
include  a  refinement  of 
the polynomial function to 
account  for  the  most 
turbid water masses and a 
validation of MODIS Aqua 
ocean  color  images 
processed  with  the  new 
hybrid  MUMM  NIR-
corrected AC algorithm.
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Fig.1:  Median difference between in situ and retrieved ρw(λ) 
for (a) moderately, (b) very and (c) extremely turbid water. M:  
MUMM AC algorithm assuming the correct aerosol model, W: 
NIR-corrected algorithm and H: Hybrid MUMM NIR-corrected 
AC algorithm assuming the correct aerosol model.
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Summary	
  

A	
  satellite	
  phytoplankton	
  functional	
  type	
  algorithm	
  intercomparison	
  project	
  was	
  launched	
  in	
  2011.	
  The	
  

project	
  was	
  tasked	
  to:	
  (i)	
  produce	
  a	
  PFT	
  algorithm	
  user-­‐guide;	
  (ii)	
  collect	
  in	
  situ	
  data	
  for	
  use	
  in	
  algorithm	
  

testing;	
   (iii)	
   conduct	
   an	
   algorithm	
   intercomparison;	
   and	
   (iv)	
   conduct	
   an	
   algorithm	
   validation.	
   In	
   this	
  

presentation,	
   preliminary	
   results	
   of	
   the	
   intercomparison	
   are	
   presented.	
   The	
   algorithm	
   comparison	
  

exercise	
   showed	
   that	
   global	
  micro-­‐	
   and	
   picoplankton	
   distributions	
   did	
   not	
   diverge	
   among	
   algorithms,	
  

although	
   some	
   differences	
   were	
   found,	
   notably	
   between	
   algorithms	
   using	
   input	
   data	
   obtained	
   from	
  

different	
  satellite	
  sensors.	
  

	
  

Introduction	
  

A	
   number	
   of	
   new	
   ocean	
   colour	
   algorithms	
   have	
   been	
   developed	
   to	
   derive	
   global	
   phytoplankton	
  

community	
  structure	
  for	
  better	
  understandings	
  of	
  biogeochemical	
  cycles	
  as	
  well	
  as	
  food	
  web	
  structure	
  

and	
   trophic	
   energy	
   efficiency	
   of	
   marine	
   ecosystems.	
   Improving	
   the	
   algorithms	
   and	
   obtaining	
   a	
  

community	
  consensus	
  as	
  to	
  how	
  phytoplankton	
  community	
  is	
  composed	
  and	
  maintained	
  in	
  our	
  planet,	
  

are	
   necessary	
   steps.	
   Therefore,	
   a	
   satellite	
   phytoplankton	
   functional	
   type	
   algorithm	
   intercomparison	
  

project	
  was	
  organized	
  in	
  2011.	
  The	
  project	
  is	
  composed	
  of	
  4	
  working	
  groups	
  (WGs):	
  (1)	
  User	
  guide	
  WG,	
  



(2)	
   In	
   situ	
  data	
   compilation	
  WG,	
   (3)	
   Intercomparison	
  WG,	
   (4)	
  Validation	
  WG.	
   In	
   this	
   presentation,	
  we	
  

show	
  initial	
  results	
  of	
  from	
  the	
  intercomparison	
  and	
  validation	
  WGs.	
  

	
  

Algorithm	
  Comparison	
  

Algorithms	
  used	
  in	
  the	
  current	
  comparisons	
  include:	
  Alvain	
  et	
  al.,	
  2012;	
  Brewin	
  et	
  al.,	
  2010;	
  Bricaud	
  et	
  

al.,	
  2012;	
  Bracher	
  et	
  al,	
  2009;	
  Fujiwara	
  et	
  al.,	
  2011;	
  Hirata	
  et	
  al.,	
  2011;	
  Kostadinov	
  et	
  al.,	
  2010;	
  Roy	
  et	
  al.,	
  

2012;	
   and	
   Uitz	
   et	
   al.,	
   2006.	
  While	
   Bracher	
   et	
   al.	
   (2009)	
  model	
   is	
   applicable	
   only	
   to	
   the	
   SCHYMACHY	
  

instrument,	
  all	
  other	
  algorithms	
  used	
  SeaWiFS	
  L3	
  9km	
  data	
  as	
  inputs.	
  The	
  comparison	
  was	
  made	
  for	
  the	
  

2003-­‐2007	
   period.	
   Monthly	
   climatologies	
   and	
   average	
   fields	
   over	
   the	
   period	
   were	
   generated	
   for	
  

comparison	
  of	
  global	
  distributions	
  of	
  micro-­‐	
  and	
  picoplankton	
  as	
  well	
  as	
  their	
  seasonality.	
   	
  

	
   Most	
   algorithms	
   showed	
   a	
   consistent	
   distribution	
   of	
   microplankton	
   (Fig.1).	
   The	
   largest	
  

differences	
  were	
  observed	
  between	
   the	
  SCHYMACHY-­‐based	
  algorithm	
  and	
  SeaWiFS-­‐based	
  algorithms,	
  

partly	
   because	
   the	
   SCHYMACHY-­‐based	
   algorithm	
   estimates	
   diatoms,	
   not	
   exactly	
   same	
   as	
  

“microplankton”	
  defined	
  in	
  the	
  other	
  algorithms,	
  and	
  partly	
  because	
  input	
  satellite	
  data	
  are	
  different.	
  In	
  

spite	
  of	
  providing	
  a	
  different	
  output	
  (“frequency	
  of	
  dominance”	
  in	
  Alvain	
  et	
  al.,	
  2008,	
  “%	
  Chla”	
  in	
  others),	
  

the	
   Alvain	
   et	
   al	
   (2008)	
   approach	
   showed	
   a	
   distribution	
   of	
   relative	
   abundance	
   of	
   pico-­‐sized	
  

phytoplankton	
   similar	
   to	
   these	
   derived	
   from	
   other	
   SeaWiFS-­‐based	
   algorithms	
   However,	
   in	
   both	
  

microplankton	
  and	
  picoplankton	
  distributions,	
  the	
  similarity	
  among	
  algorithms	
  do	
  not	
  guarantee	
  results	
  

are	
   accurate,	
   and	
   a	
   validation	
   using	
   in	
   situ	
   data	
   is	
   required	
   to	
   give	
   a	
   better	
   understanding	
   as	
   to	
   the	
  

accuracy	
  of	
  our	
  current	
  estimation	
  of	
  PFT	
  distributions.	
  

	
  

Ongoing	
  validation	
  efforts	
  

In	
  situ	
  datasets	
  (collected	
  within	
  the	
  in	
  situ	
  data	
  compilation	
  WG)	
  are	
  to	
  be	
  matched	
  in	
  space	
  and	
  time	
  

with	
  satellite	
  observations.	
  The	
  satellite	
  observations	
  will	
  be	
  used	
  by	
  algorithm	
  developers	
  to	
  process	
  

and	
  estimate	
  PFTs,	
  meanwhile,	
  in	
  situ	
  data	
  will	
  be	
  also	
  processed	
  to	
  estimate	
  PFTs	
  based	
  on	
  a	
  method	
  

agreed	
  by	
  the	
  community.	
  An	
  objective	
  methodology	
  to	
  test	
  the	
  performance	
  of	
  the	
  satellite	
  algorithm	
  

is	
  currently	
  being	
  developed.	
  This	
  includes	
  simple	
  statistical	
  tests	
  such	
  as	
  Type	
  II	
  regression,	
  RMSE	
  and	
  

bias,	
  with	
  reference	
  to	
  a	
  similar	
  methodology	
  used	
  in	
  the	
  ESA	
  OC-­‐CCI	
  project.	
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Summary 

 

  We have developed an algorithm to estimate size fractionated chlorophyll a (chl a) concentration 

using inherent optical properties (IOPs). A function of particle size distribution based on the Junge 

distribution was applied to express the size fractionated chl a and a slope of power function was 

determined for each sample. This method can estimate three phytoplankton size classes (micro, nano 

and picoplankton) with root mean square errors less than 36 % when the IOPs were calculated from 

remote sensing reflectance. Advantage of applying the particle size distribution is possibility to represent 

other size factions. Algorithm developed in this study succeeded to derive a fraction of ultraplankton (< 5 

μm) from in situ IOPs. 

 

Introduction 

 

  Size of phytoplankton cells are strongly related to limitation factors of photosynthesis such as light and 

nutrients [1]. Meanwhile sinking speed of the cells and number of trophic levels in marine food web are 

strongly influenced by the size [2, 3]. Therefore, large spatio-temporal scale observation of the 

phytoplankton size distribution is important to understand the global carbon cycle and marine 

ecosystems. While the phytoplankton size distribution has been determined frequently by measuring 

size fractionated chlorophyll a (chl a) concentration using several kinds of filters with different pore or 

mesh size, pigments composition measured with the high performance liquid chromatography (HPLC) is 

utilized to estimate phytoplankton size class, particularly for development of ocean color algorithms 

recently [e.g. 4]. However, gaps between the two methods are expected and algorithm to derive 

phytoplankton size from the former method has not been developed. In this study, we provide a new 

way to estimate size fractionated chl a concentration using light absorption coefficient of phytoplankton 

and spectral slope of backscattering coefficient and evaluate the performance of algorithm. 

 

 



Discussion 

 

A function of particle size distribution based on the Junge distribution [5] was applied to express the size 

fractionated chl a concentraions of three size classes (pico, nano and microphtyoplankton defined as 

fraction of <2, 2-10, >10μm, respectively). For each sample, a slope of power function (η) was 

determined assuming the minimum and maximum size is 0.7 and 200 μm, respectively. The slope η was 

derived from spectral slope of backscattering coefficient (γ) and a ratio of absorption coefficients of 

phytoplankton (aph) at two wavelengths using a multiple 

linear regression (Fig. 1). 

 

This method can estimate fraction of three phytoplankton 

size classes with root mean square errors (RMSE) less than 

36 % when the IOPs were calculated from remote sensing 

reflectance. If η is possible to derive without error, RMSE in 

estimation of the fractions reduces to <10.5%. Although 

further improvements in derivation of η from IOPs, a 

fraction of ultraplankton (< 5 μm) was able to be estimated 

from in situ IOPs (RMSE = 18%). This algorithm is appropriate 

to compare with typically measured size fractionated chl a in 

situ for oceanographic and marine ecological studies. 
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ABSTRACT 
 
Studies of long-term ocean changes in response to climate variability call for the most accurate 
and consistent data products across multiple ocean color missions, and a thorough understanding 
of the uncertainties is the first step towards a seamless, multi-sensor data record. For a well-
calibrated sensor, data product uncertainties result primarily from two sources: the sensor’s 
signal-to-noise ratio (SNR) and the algorithms to derive the products. Using statistics and a 
recently developed chlorophyll-a (Chl) algorithm (the ocean color index (OCI) algorithm) to 
determine the highest-quality data, we quantified SNRs, uncertainties in the remote sensing 
reflectance (Rrs) products, noises in the band-ratio OCx Chl products and OCI Chl products from 
several ocean color instruments including SeaWiFS, MODIS/Aqua, MERIS, and VIIRS. 
MODISA ocean bands show 2-4 times higher SNRs than SeaWiFS and comparable SNRs to 
MERIS-RR (reduced resolution, 1.2-km) data. Correspondingly, MODISA Chl products show 
the least uncertainties when evaluated using a spatial homogeneity test. While MERIS and 
VIIRS data are still being analyzed, both SeaWiFS and MODISA showed Rrs uncertainties 
within mission specifications, with higher uncertainties in SeaWiFS Rrs data possibly due to its 
lower SNRs. When comparing the global and regionally monthly means for deep oceans, the 
sensors often showed significant differences (> 5-10%) in the OCx Chl products. These 
differences may overwhelm real ocean changes and may also bring questions to the fidelity of 
the global data when only one sensor is operational in orbit. The cross-sensor differences in the 
product uncertainties are believed to result primarily from different SNRs and imperfect 
atmospheric corrections. In contrast, the OCI Chl algorithm was designed to be much more 
tolerant to noises and atmospheric correction errors for clear waters (Chl  0.25 mg m-3), which 
indeed led to a much more consistent multi-sensor Chl data record from all sensors evaluated 
(SeaWiFS, MODISA, MODIST, MERIS, VIIRS) for the deep ocean, with most of the cross-
sensor differences reduced by more than half. While some of these uncertainties may be removed 
using empirical approaches (Fig. 1), the new OCI algorithm provides a solution to bring all 
sensors together to form a multi-sensor Chl data record (Fig. 2). As we are now entering a 
transition period to use VIIRS and to design several ocean color continuity missions, it may be 
time to change the 40-year band-ratio paradigm to a band-subtraction concept or other 
mechanistic algorithms in order to establish more consistent multi-sensor ocean color data 
records. 



 

 

 

 

 

 

 

 

 

Fig. 1. SeaWiFS Rrs(555) (sr-1) in the North Atlantic Gyre (~1500 km x 1500 km centered at 
23oN 47oW) on 27 December 2006 from the default SeaDAS processing (a) and after an 
empirical correction (b). In this oligotrophic gyre Rrs(555) is expected to be homogeneous.  
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Fig. 2. Chl ratios between different satellite sensors using two algorithms: the default OCx band-
ratio algorithm and the new OCI algorithm. The latter is shown to improve cross-sensor 
consistency significantly. 
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Summary 

 

 

Superpositioning of surface current vectors produced by a numerical model and the monthly chlorophyll 

concentration in the Atlantic ocean near Morocco have revealed a surface eddy trapped by the Canary 

Islands adjacent to the coast. Near the eddy chlorophyll concentrations are higher 100 km off shore that 

at more distant locations. There are implications for larvae retention of the northern sardine stocks. 

 

Text 

 

Pelagic fisheries are an important element in the Moroccan economy and the fluctuations in the 

magnitude and location of the stocks present difficulties for the management of the resource. Schooling 

small pelagic fish in an upwelling region such as the Moroccan coastal region are able to spawn in the 

Canary current and have the juveniles develop to adults in the same geographic region. The eggs 

provided by small pelagic fish float passively in the water column and take order 30 days to develop 

swimming skills able to counter in the prevailing current. 

We used satellite ocean colour data [1] and 0.1 degree resolution hydrodynamic ocean model outputs 

fused by EASy [2] software to examine the Moroccan coastal ocean from the Gibraltar Straits to the 

Canary Islands. Monthly averages of the surface current from the hydrodynamic model ECCO2 was used. 

During the period 1997 to2007 a topographically trapped counter clockwise eddy north of the Canary 

Islands persistently provided recirculation of chlorophyll rich water. The time for a passive scalar to 

make one circuit of the eddy is order 40 days. 

 

The probability of finding an eddy at 30 degrees N for the period 1997 to 2007. 
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The difference in chlorophyll concentration mg/m3 100 km from the coast at latitude 31 degrees N and 32 degrees 

N during the period 1997 to 2007. 

 

Kifani [3] identified two reproduction areas on this portion of the Moroccan Coast and one is near 

latitude 32 degrees N where in autumn there is a very high probability of finding the counter clockwise 

rotating eddy. Chlorophyll levels at 100 km from the coast are higher near the eddy than further to the 

north providing potential food for larvae that remain within this eddy. The eddy probability of 

occurrence and the larger chlorophyll concentration is shown as a function of the month of observation. 
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Summary 

We have developed empirically optimized versions of the QAA semianalytic algorithm for 4 

ocean color sensors (OCTS, SeaWiFS, MODIS-Aqua and MERIS) by applying a complex 

optimization process that minimizes the differences in estimated inherent optical properties 

(IOPs) between match-ups of in situ and satellite data and also between the estimated IOPs of 

the overlapping satellite sensors (SeaWiFS, MODIS-Aqua, MERIS). We then apply the algorithms 

to standard satellite remote sensing reflectance (Rrs) estimates and create merged multi-sensor 

time series of the near-surface optical characteristics in the California Current region for a time 

period of over 16 years (November-1996 to December-2012). 

Introduction and Results 

Satellite observations of ocean color have become the most important method of monitoring 

global distributions of phytoplankton and ocean productivity, and validating various models. 

However, the primary output product, the concentration of chlorophyll-a (Chla), when 

estimated with the standard band ratio algorithms primarily represents a change in the total 

absorption coefficient at the blue wavelength (~440 nm) and is often biased compared to in situ 

Chla. Here we estimate the following set of IOPs using a tuned version of the QAA semianalytic 

algorithm [1]: the total absorption coefficient at 490 nm (a490), phytoplankton absorption 

coefficient at 440 nm (aph440), absorption by dissolved and detrital organic matter at 440 nm 

(adg440) and particle backscattering coefficient at 490 nm (bbp490). By tuning the coefficients 

of the QAA models we were able to remove most of the bias when compared to the in situ 

measurements and between individual sensors (Fig. 1). However, due to the limited number of 

in situ match-ups and their uneven distribution as well as the large errors in the satellite-derived 

Rrs, the uncertainty in the retrieved IOPs is still significant and the differences between the IOPs 

derived from different sensors cannot be completely eliminated. The merged time series show 

the dominant annual cycle (Fig. 2) but also significant variability at interannual time scales. The 

ratio of adg440 to aph440 is around 1 in the transition zone of the California Current (100-300 

km from coast), is >1 in the coastal zone (0-100 km from coast) and generally <1 offshore (>300 



km from coast). adg440 decreases towards south and towards offshore. 

 

Fig. 1. Combined (OCTS, SeaWiFS, MODISA, MERIS) match-ups (blue dots) of aph440 between satellite 

estimates and in situ using the standard QAA model (left) and the tuned QAA (right). 

  

Fig. 2. Mean annual cycle of the merged multi-sensor adg440, aph440 (left axis) and the ratio of adg440 

to aph440 (right axis) for offshore (left panel, 300-1000 km from coast) and coastal (right panel, 0-100 km 

from coast) of Southern California. The horizontal black line shows where adg440/ aph440 = 1. 

Conclusions 

We created a consistent multi-sensor time series of the surface IOPs in California Current region. 
The merged 16-year time series (1996-2012) show an increasing trend until 2012 in the proxies 
of phytoplankton biomass in the California Current which is consistent with some observations 
[2] and model predictions of either increased upwelling or increased nutrient content in the 
upwelled waters. Also, a trend of decreasing phytoplankton biomass in the oligotrophic 
subtropical Pacific was shown. However, uncertainties in our estimates of IOPs are still large and 
require further work.  
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Assessment  of  the  ocean's  role  in  biogeochemical  cycling  and  climate  formation  requires 

characterization  of  oceanic  ecosystems'  structure  and  function.    This  can  be  accomplished  by 

understanding the spatio‐temporal variability of phytoplankton functional types  (PFTs) and  its physical 

drivers.    Satellite  remote  sensing  of  ocean  color  is  the  best  available  tool  for  sustained  continuous 

oceanic ecosystem observation.   Various algorithms  for  the retrievals of PFTs have been developed  in 

recent years, using different theoretical bases and PFT definitions [1].  The algorithm of Kostadinov et al. 

[2,3] defines  the PFTs  in  terms of percent  contribution  to biovolume of  three  size‐based PFT groups:  

picophytoplankton  (here,  cell  diameter  between  0.2  and  2  m),  nanophytoplankton  (2–20  m)  and 

microphytoplankton  (20–50  m).    This  method  is  based  upon  retrievals  of  the  parameters  of  an 

assumed power‐law particle size distribution  (PSD), using existing spectral backscattering retrievals  [4] 

and a theoretically derived look‐up table. 

Phytoplankton  carbon  biomass  (rather  than  biovolume)  is  more  closely  related  to  biogeochemical 

cycling and climate and  it  is needed  for deriving carbon‐based phytoplankton productivity  from ocean 

color [5].   Here, we develop a procedure to recast the PFTs  in terms of relative contribution to carbon 

biomass,  rather  than  volume.   We  start with  the  same PSD  retrievals as  the  volume‐based approach 

(here, derived  from monthly SeaWiFS  r2010.0  imagery), but convert cell volumes  in each size class  to 

carbon  biomass  before  PFT  calculation.   We  use  the  allometric  relationships  of Menden‐Deuer  and 

Lessard  [6],  as  in  the  initial  effort  by  [7].  Fig.  1  illustrates  the  SeaWiFS  mission  climatology  for 

picoplankton  (A) and microplankton  (B).   As expected, picoplankton dominate oligotrophic areas and 

microplankton are abundant only in eutrophic areas.  

Partitioned carbon biomass estimates were also uses as input to the vertically‐integrated version of the 

carbon‐based  productivity  algorithm  (CbPM)  [5]  in  order  to  estimate  PFT‐specific  NPP.    PFT‐specific 

maximum growth rates were based on [8], and PFT‐specific chlorophyll concentrations were based on 

SeaWiFS chlorophyll (r2010.0) and the size fractions of Uitz et al. [9].  Results for the August 2007 image 

are presented in Fig. 1C for picoplankton and Fig. 1D for microplankton.   

At  this  stage  the  presented  products  are  preliminary  and  retrieved  variables may  not  be  necessarily 

geophysically  accurate.   While  this  especially  applies  to  the  absolute  values  of  carbon  biomass  and 

productivity, carbon‐based PFTs (Fig. 1A‐B) are defined by ratios of biomass.   Our goal  is to assess the 

feasibility of using ocean color‐based retrievals of the particle size distribution parameters to estimate 

size‐partitioned carbon‐based biomass and productivity.   Next steps will focus on further methodology 



improvements,  comparison  to  existing  algorithms  [1,  10,  see  also  7],  and  validation  of  these  novel 

satellite ocean color products.       

Figure 1.  SeaWiFS mission climatology (1997‐2010) of percent allometric carbon biomass due to (A) picoplankton 

(0.2 ‐2 m) and (B) microplankton (20‐50 m).  Note the different colorbar scales. August 2007 CbPM net primary 

productivity due to (A) picoplankton (0.2‐2 m), and (B) microplankton (20‐50 m), using allometric PSD‐based 

carbon estimates.  
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ABSTRACT 
We developed and compared different empirical and semi-analytical algorithms for optically 
complex waters to retrieve the diffuse attenuation coefficient of downwelling irradiance, 
Kd(490), and tested them against an independent data set, in order to ultimately suggest a 
robust algorithm that is valid for optically complex water bodies with high concentrations of 
CDOM.  
In the first approach, developed by Austin and Petzold (1981), revisited by Mueller (2000), 
Kd(490) was estimated from the empirical relation between Kd(490) and the ratio of remote-
sensing reflectance at two wavelengths within the visible spectrum. Due to MERIS 
characteristics, several bands in the longer wavelengths (560, 620, 660, 710 nm) were 
available to retrieve better reference conditions over CDOM dominated coastal waters. 
Various sets of band ratios were tested to achieve the best estimate for Kd(490) where 
reflectance data was retrieved either using MERIS standard algorithms (ODESA) or an 
alternative processor for atmospheric correction and water quality parameters (FUB WeW). In 
the second approach, Kd(490) was expressed as a function of inherent optical properties (IOP) 
after the algorithms by Lee et al. (2005b) and Kirk (1994). The IOPs needed as an input for 
these algorithms were retrieved from MERIS level 2 products (algal_2, total_susp and 
yellow_subs) or taken from the literature. 
We compared the MERIS derived Kd(490) values by various algorithms with values measured 
in optically complex coastal waters in the Baltic Sea which showed very good estimates for 
both methods.  The results indicate that for empirical algorithm, the RMSE (%) decrease and 
the coefficients of determination (R2) increase when using the longer wavelengths in the 
visible spectrum as reference band. The best estimates were retrieved by using the reflectance 
ratio of MERIS bands Rrs(490)/Rrs(710), which provides a promising approach (RMSE 14%, 
R2=0.98, N=14) for estimating  Kd(490)over a wide range of values (0.2 - 2.5m-1). Figure 1 
shows Kd(490) for the Baltic Sea on 22 May 2002 using the best algorithm. 
 
 
 
 
 
  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Kd(490) image of the Baltic Sea on 22 May 2002 using MERIS bands 
Rrs(490)/Rrs(710). 
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The attenuation coefficient of downwelling irradiance at 490 nm (Kd490) is a standard product for 

satellite ocean color missions. Presently Kd490 is derived from the ratio of remote sensing reflectance 

(Rrs) at ~490 nm and ~555 nm, and it is limited to this single spectral band. Studies from photosynthesis 

to heat transfer, however, require spectral Kd, where empirical band ratios could be cumbersome for its 

generation. In principle, Kd is a function of sun angle and water’s inherent optical properties (IOPs) 

including absorption and backscattering coefficients. Because these IOPs products are also generated 

routinely from satellite measurements, it is logical to evolve the empirical Kd product to semi-analytical 

Kd product that is not limited to one wavelength but flexible for hyperspectral data. The semi-analytical 

Kd product also explicitly accounts for the impact of sun angle and the contribution of backscattering 

coefficient. Furthermore, the analytical nature makes it straightforward to quantify the product 

uncertainty pixel-by-pixel. Here, using field data collected from oligotrophic ocean to coastal waters 

covering >99% of the range of global oceans, we evaluate the semi-analytical Kd product and 

demonstrate the applicability of the algorithm as well as the quality of the product. Data products 

generated from ocean-color sensors are also presented to provide a global perspective. 
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Summary 
 
Remote sensing reflectance measured by high resolution satellite sensors is used to map water turbidity 
and total suspended sediment concentration (TSS) in turbid coastal waters. Empirical relations between 
water turbidity, backscattering coefficient and TSS  were derived using in-situ measurement data. These 
relations were applied to satellite derived backscattering coefficient to produce maps of turbidity and 
TSS.   
 
Introduction 
 
Water reflectance depends on the intrinsic optical properties, primarily the absorption and scattering 
coefficients. Hence, it is possible to derive the water turbidity and TSS, both related to scattering by 
suspended particles, from remote sensing reflectance measured by satellite sensors. In this paper, we 
describe our experience in providing a user service for mapping water turbidity and TSS in turbid coastal 
waters using high resolution SPOT-5 satellite.  The service was provided in conjunction with the 
environmental impact assessment of a bridge construction project. The visible bands have considerable 
penetrating power through water. Hence, the signals from these bands are likely to be influenced by 
water depth. We used the NIR band to derive water turbidity and TSS to minimize this problem. 
 
Method 
 
The SPOT satellite data were converted to the top-of-atmosphere reflectance, and corrected for 
Rayleigh scattering and molecular absorption using routines in the 6S package [1] with considerations of 
the sensor spectral response. The SWIR band is used to correct for surface glints. The water reflectance 
is converted to sub-surface remote sensing reflectance and the backscattering coefficient was computed 
using an algorithm based on the Quasi-Analytical Algorithm (QAA) [2] [3]. In-situ measurements of water 
reflectance, suspended sediment concentration and water turbidity were performed to establish the 
relations between water backscattering coefficient, turbidity and TSS. The relations were applied to 
convert the satellite measured water backscattering coefficient to water turbidity (in nephelometric 
turbidity unit, NTU) and TSS.  
 
Results and discussion 
 
Results of in-situ measurements conducted during seven field trips indicate that the backscattering 
coefficient has a linear relation with water turbidity (R2 = 0.93). The backscattering coefficient values 
were derived from above-water reflectance spectra measurement by a hand-held spectroradiometer 
using a spectral matching method [4]. TSS (in mg/l, measured by the filtration method) was found to 



have a power-law relation with turbidity (R2 = 0.84) (see Fig. 1). The field trips were conducted over a 
period of 3 years from Sep 2009 to Sep 2012 at twenty sampling locations. The turbidity values ranged 
from about 1.5 NTU to over 100 NTU. Only samples with turbidity below 70 NTU (136 out of 140 
samples) were used in establishing the regression relations.  These relations were applied to the 
backscattering coefficient derived from satellite data to produce maps of water turbidity and TSS at 
about half yearly interval. 

 
Due to prevalence of cloud covers in the region, most of 
the field trips did not coincide with satellite data 
acquisition dates. In one occasion (13 March 2012), the 
satellite derived values of backscattering coefficient were 
found to agree quite well with those derived from in-situ 
spectral reflectance measurements collected within an 
hour of the satellite pass (bias = 0.07 m-1, R2 = 0.50)    
 
Conclusion 
 
We demonstrated that water turbidity and TSS maps can 
be derived from high resolution satellite data such as 
those acquired by the SPOT and Landsat satellites. Our 
experience with measurements across different water 
types seem to indicate that the relation between turbidity 
and backscattering coefficient is quite robust. This is 
probably due to the fact that turbidity and backscattering 
coefficient are both determined by the scattering 
properties of suspended particles. Our method of deriving 
backscattering coefficient does not require the availability 
of external data and hence can be used for routine 
operational applications in monitoring water turbidity for 
different water types. On the other hand, The relation of 

TSS with turbidity is expected to depend on the bulk density, refractive index and size distribution of the 
suspended particles.  This relation needs to be established before TSS can be derived from remote 
sensing measurements. 
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Fig. 1: Relations between backscattering 
coefficient and turbidity (top), turbidity and 
TSS (bottom). 
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The retrieval of only three parameters by water color remote sensing seems to lead to a 

narrow road, which may inversely limit the development of water color remote sensing. This 

manuscript aims to discover an unusual link between phytoplankton pigments with particulate 

organic carbon (POC), which extends the retrieval water parameters by remote sensing. 

Study Area 

Taihu Lake, a typical eutrophic lake with a water surface area of 2338 km
2
, is located in the 

middle and lower reaches of Yangtze River, Easten China (Fig.1). Cyanobaceria blooming 

always happen especially in summer in the last 20 years (Duan et al., 2009; Ma et al., 2009). 

 

 

 

 

 

 

 

Fig.1 Location of Taihu Lake 

Data 

Five campaigns with 137 surface water samples were made during January, March, May, 

August and November 2011. The measured parameters included remote sensing reflectance, 

backscattering, absorption (due to phytoplankton pigment, non-algal particulate matter and 

CDOM), Chla, POC, SPM, SPIM (suspended particulate inorganic matter) and SPOM 

(suspended particulate organic matter). MERIS images were used. 

Results 
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Fig.2 Relationships between POC and (a) phytoplankton pigment absorption at 620 nm (aph(620) and (b) 
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detritus absorption at 620 nm (ad(620)). 
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Fig.3 Estimation of POC concentration from aph(620)) using data sampled from Meiliang and Zhushan 

Bays in the 5 cruises in Taihu Lake. 
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Fig. 4 Comparison of measured POC and MERIS-derived POC using data from the measurement 

campaign in May 2011. 

 

 

 

Fig.5 MERIS-derived POC in Taihu Lake surface waters using the link relationship 

Conclusions 

By linking POC to aph(620) and then to remote sensing reflectance, it was possible to 

develop a new algorithm to examine the spatio-temporal dynamics of surface POC in 

Taihu Lake. It provides a needed new tool to explore carbon cycling in inland waters. 
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Summary 

Lake Taihu, the third largest freshwater lake in China, is one of the main drinking water sources 

for 40 million people in the Jiangsu and Zhejiang provinces, and Shanghai municipality. In recent 

years, it has experienced significant pollution due to rapid economic growth in the surrounding 

region. Increasing eutrophication and reoccurring algal blooms pose a significant threat to the 

millions of people who rely on the lakes for drinking water supply. Around Lake Taihu, we did a 

series of water colour research including IOPs, AOPs, phytoplankton pigments and algal blooms. 

We also try to develop new algorithm to estimate DOC and POC. Here I’m going to introduce all 

of these. 

Introduction 

According to ecological theory and in situ observations in Lake Taihu, a four-phase development 

hypothesis has been proposed for the process of the cyanobacterial bloom forming: dormancy in 

winter, recruitment in spring, growth and float to the water surface in summer, and sink to the 

sediment in autumn [1]. During the early bloom stage, it is crucial to detect and quantify 

cyanobacterial blooms [2]. Early detection allows local authorities to make appropriate changes 

in water supply and catchment management. In summer and autumn, it’s important to monitor 

the blooms and focus on the complex integration of many environmental factors on algal 

blooms.  

To better explore carbon cycling in the aquatic ecosystems, it is necessary to understand the 

concentrations and fate of the main organic components. The role of particulate organic carbon 

(POC) and dissolved organic carbon (DOC) is particularly important and plays a fundamental role 

in the attenuation of solar radiation. 

Discussion 

The phytoplankton species variations from early recruitment to bloom formation pose 
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significant challenges in remote sensing algorithm development, as most algorithms depend on 

the mass-specific phytoplankton pigment absorption coefficient either explicitly (such as the 

Gons and Simis algorithms) or implicitly (such as the band-ratio algorithms). This effect was 

clearly shown in the algorithm performance after local parameterizations. One potential 

explanation of the high mass-specific absorption coefficient in the local data that the pigment 

concentrations may have been underestimated due to inefficient pigment extraction. However, 

we have no evidence to support this speculation, but rather believe that the high mass-specific 

absorption is more likely caused by the changing pigment composition (Chla in all phytoplankton, 

Chlb in green algae, and Chlc in diatoms) in different species, which makes universal 

parameterizations difficult.  

Conclusions 

From a practical point of view, all algorithms need to be applied to satellite imagery to test their 

performance, validity, and applicable range. Unfortunately, such tests for the cited algorithms 

have rarely been available due to a variety of reasons. For our case study here, direct validation 

using MERIS satellite data suffered from lack of high-quality (cloud-free, glint-free, relatively low 

aerosols) data. Among all polar-orbiting satellite sensors, MERIS is perhaps the most applicable 

sensor for its 620-nm and 709-nm bands, 300-m spatial resolution, 2-3 day revisit time, and high 

signal-to-noise ratio. Unfortunately, of all MERIS data collected during the cruise survey period 

(23 April to 3 May 2010) or adjacent days, no image was sun glint free with minimal cloud cover. 

Although data from the Moderate Resolution Imaging Spectroradiometers (MODIS) are available 

for their much wider swath width than MERIS, the sensors are not equipped with the required 

spectral bands (620 and 709-nm). Likewise, the Geostationary Ocean Color Imager (GOCI) 

launched in 2010 measures the study region 8 times a day at 500-m spatial resolution, the lack 

of spectral bands makes it difficult for using these algorithms. In the future, MERIS-like sensors 

on geostationary platforms may provide the ultimate solution on routine monitoring and 

quantitative assessment of cyanobacterial blooms in these inland water bodies.  
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In the coastal ocean, multiple source inputs and removal processes yield variable distributions of 
colored dissolved organic matter (CDOM), dissolved organic carbon (DOC) and particles on a 
seasonal to inter-annual basis.  Our objectives entail development and validation of regional 
ocean color satellite algorithms for the CDOM absorption coefficient (aCDOM), DOC and lignin 
phenols (as proxies for terrigenous DOM), and application of these algorithms to quantify 
seasonal to interannual distributions, inventories, cross-shelf fluxes and study the processes that 
contribute and remove organic matter from coastal zone.  Field measurements of remote sensing 
reflectance (Rrs) and aCDOM are used to develop regional satellite algorithms to retrieve aCDOM 
and CDOM spectral slope (S). Empirical relationships of aCDOM and S with DOC and lignin 
phenols from field observations will be applied to retrieve DOC and lignin phenols from ocean 
color satellite data.  We have demonstrated strong linear relationships between aCDOM and 
discrete measurements of DOC throughout the northeastern U.S. continental margin and between 
lignin phenols and aCDOM or S within the southern Middle Atlantic Bight and Chesapeake Bay. 
The correlations between DOC and CDOM vary seasonally and between regions requiring 
variable coefficients for each region (southern Middle Atlantic Bight, Hudson estuarine plume 
and western Gulf of Maine).  Nevertheless, the regional and seasonal aCDOM to DOC correlations 
enable satellite retrieval of DOC through the aCDOM algorithm.  
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ABSTRACT 7 

The atmospheric correction of satellite remote sensing data for turbid waters meets some 8 

problems in which the aerosol scattering reflectance is the most uncertain term to be determined. The 9 

standard method of the atmospheric correction is based on the dark pixel assumption of the 10 

water-leaving reflectance in the two NIR bands and this assumption usually becomes invalid for 11 

turbid coastal waters. A new approach was developed to accurately estimate the aerosol scattering 12 

reflectance for the turbid coastal waters. This approach is based on the idea that the aerosol 13 

scattering reflectance can be obtained from the known water-leaving reflectance of the satellite 14 

measured reflectance at the top of the atmosphere. The water-leaving reflectance is determined from 15 

the choice of a look-up table of in situ measurements based on the Angstrom law of the candidate 16 

aerosol scattering reflectance using the best non-linear least squares fit function. The performance of 17 

the approach was evaluated using the simulated reflectance at the top of the atmosphere, the 18 

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) imagery, and in situ measured aerosol optical 19 

thickness. This approach is based on the assumption of the aerosol scattering reflectance following 20 

the Angstrom law instead of the standard dark pixel assumption, providing a new approach of the 21 

atmospheric correction of satellite remote sensing data.  22 
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Summary	
  

In	
  this	
  paper	
  we	
  present	
  the	
  analysis	
  of	
  the	
  spatial	
  and	
  temporal	
  distribution	
  of	
  the	
  Phytoplankton	
  
Size	
   Classes	
   in	
   the	
  Mediterranean	
   Sea	
   derived	
   from	
   a	
   SeaWiFS	
   satellite	
   dataset	
   produced	
   using	
   a	
  	
  
Mediterranean	
   regional	
   algorithms	
   for	
   case	
   1,	
   case	
   2	
   and	
   transition	
  waters.	
   The	
   results	
   show	
   the	
  
open	
   Mediterranean	
   water	
   are	
   mainly	
   dominated	
   by	
   picoplankton	
   all	
   around	
   the	
   year	
   with	
   a	
  
maximun	
   during	
   summer	
   and	
  minima	
   in	
   autumn	
   and	
   winter	
   in	
   open	
   sea	
   regions	
   not	
   affected	
   by	
  
intense	
   spring	
   blooms.	
   Coastal	
   	
   and	
   intense	
  bloom	
   regions,	
   instead,	
   show	
   the	
  dominance	
  of	
   nano	
  
and	
  micro	
  plankton.	
  	
  

	
  
Introduction	
  
	
  
In	
   recent	
   years	
   several	
   models	
   have	
   been	
   proposed	
   to	
   identify	
   the	
   contribute	
   of	
   different	
  
Phytoplankton	
   Size	
   Classes	
   (PSCs)	
   and	
   Phytoplankton	
   Functional	
   Types	
   (PFTs)	
   to	
   the	
   total	
  
phytoplankton	
  chlorophyll-­‐a	
   biomass	
  or	
   to	
  estimate	
  Particle	
   Size	
  Distribution	
   from	
   remote	
   sensing	
  
Ocean	
  Color	
  data.	
  These	
  bio-­‐optical	
  algorithms	
  can	
  provide	
  an	
   important	
   instrument	
  for	
  a	
  synoptic	
  
studies	
  of	
  the	
  Phytoplankton	
  community	
  structure	
  and	
  its	
  spatial	
  and	
  temporal	
  	
  variability	
  and	
  then	
  
improve	
   our	
   knowledge	
   about	
   the	
   ecological	
   and	
   biogeochemical	
   dynamics	
   connected	
   with	
   it.	
  
Validation	
   exercises	
   performed	
   at	
   global	
   scale	
   using	
   data	
   representative	
   of	
   a	
   variety	
   	
   possible	
  
situations	
   have	
   shown	
   that	
   the	
  models	
   are	
   able	
   to	
   capture	
   the	
   general	
   trend	
   of	
   the	
   size-­‐specific	
  
chlorophyll-­‐a	
   concentration	
   [1],	
   [2],	
   [3].	
   Of	
   course,	
   at	
   regional	
   scale	
   deviation	
   from	
   this	
   trends	
  
agreement	
  can	
  be	
  observed.	
  
	
  
Discussion	
  
	
  
In	
  this	
  work	
  we	
  concentrated	
  our	
  investigation	
  over	
  the	
  Mediterranean	
  an	
  Black	
  Seas	
  region	
  applying	
  
two	
  models,	
  	
  based	
  on	
  biological	
  and	
  ecological	
  approaches	
  ,	
  proposed	
  by	
  Brewin	
  and	
  co-­‐authors	
  [2]	
  
and	
   by	
   Hirata	
   and	
   co-­‐authors	
   [3]	
   to	
   the	
   SeaWiFS	
   mission	
   data	
   from	
   1998	
   to	
   2010.	
   The	
   regional	
  



Mediterranean	
   case	
   1	
   and	
   case2	
   merged	
   product	
   were	
   provided	
   by	
   MyOcean	
   Ocean	
   Colour	
  
Thematic	
  Assembling	
  Centre.	
  
	
  
The	
  two	
  models	
  were	
  tested	
  using	
  	
  a	
  Mediterranean	
  subset	
  of	
  the	
  NOMAD	
  SeaBASS	
   in-­‐situ	
  dataset	
  
[4],[5],[6]	
  and	
  HPLC	
  data	
  collected	
  by	
  the	
  authors	
  group	
  in	
  several	
  cruises	
  in	
  the	
  West	
  Mediterranean	
  
Sea.	
  The	
  matchup	
  analysis	
   indicates	
   that	
   the	
   first	
  model	
   [2]	
   tends	
   to	
   slightly	
   to	
  underestimate	
   the	
  
concentration	
   of	
   nanoplakton	
   chlorophyll	
   and	
   overestimate	
   the	
   concentration	
   of	
   picoplankton	
  
chlorophyll.	
  In	
  the	
  second	
  model	
  [3]	
  the	
  nanoplankton	
  underestimation	
  is	
  less	
  evident	
  as	
  well	
  as	
  the	
  
picoplakton	
  overestimation.	
  

The	
   analysis	
   of	
   the	
   spatial	
   and	
   temporal	
   distribution	
   of	
   the	
   three	
   PSC	
   components,	
   derived	
   from	
  
satellite	
   data,	
   indicates	
   that	
   Picoplankton	
   dominates	
   all	
   around	
   the	
   year	
   with	
   a	
  maximum	
   during	
  
summer	
   and	
   minima	
   in	
   autumn	
   and	
   winter	
   in	
   open	
   sea	
   regions	
   not	
   affected	
   by	
   intense	
   spring	
  
blooms.	
  Coastal	
   	
   and	
   intense	
  bloom	
  regions,	
   instead,	
   in	
  general	
   show	
   the	
  dominance	
  of	
  nano	
  and	
  
micro	
  plankton.	
  	
  

Figure	
  1	
  shows	
  an	
  example	
  of	
  	
  the	
  yearly	
  cycle	
  for	
  Pico,	
  Nano	
  Micro-­‐planktonin	
  the	
  Ligurian	
  Sea.	
  The	
  
yearly	
  cycle	
  of	
  the	
  three	
  components	
  is	
  well	
  marked	
  by	
  a	
  minimum	
  of	
  	
  picoplankton	
  concentration	
  in	
  
spring	
  (March	
  -­‐	
  April)	
  and	
  maximum	
  in	
  summer.	
  Microplankton	
  dominated	
  from	
  March	
  to	
  April.	
   In	
  
the	
   Ionian	
   Sea,	
   where	
   the	
   spring	
   bloom	
   is	
   less	
   intense,	
   the	
   picoplankton	
   maximum	
   occurs	
   from	
  
December	
  to	
  February.	
  	
  

	
  

	
  

Figure	
  1.	
  Mean	
  monthly	
  PSC	
  distribution	
   in	
  the	
  Ligurian	
  Sea	
  (NW	
  Mediterranean).	
  Picoplakton	
  percent	
   (blue),	
  
Nanoplankton	
  percent(yellow),	
  microplankton	
  percent	
  (red)	
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Summary 

Cynobacteria may be distinguished from eukaryotic algae on the basis of the magnitude of the peak near 
709 nm from top of atmosphere MERIS FR data. A new approach called the maximum peak height 
(MPH) algorithm is presented for estimating trophic status (chlorophyll a), surface scums and floating 
vegetation in inland and near coastal waters. Evidence is presented from a two-layered sphere model 
for enhanced backscattering from cyanobacteria due to intracellular gas vacuoles. Cyanobacteria 
dominant waters may be distinguished from those dominated by eukaryotes using a flagging procedure 
based on the unique pigmentation and fluorescence features of cyanobacteria.  

Introduction 

Cyanobacterial blooms in marine and fresh waters represent an increasing and substantial global health 
threat. A new approach is presented which enables cyanobacteria-dominant waters to be distinguished 
from those dominated by eukaryotic algae from space [1]. A dataset consisting of 74 coincident top-of-
atmosphere reflectance spectra from the Medium Resolution Imaging Spectrometer (MERIS) and in situ 
chlorophyll-a (chl-a) observations is used to derive an algorithm for estimating phytoplankton biomass 
(chl-a) over a wide trophic range (0.5 mg/m^3<chl-a<362 mg/m^3). The algorithm makes use of the chl-
a fluorescence and backscatter/absorption features in the red/NIR MERIS wavebands to calculate the 
maximum-peak height. By plotting the MPH variable in chl-a space, waters dominated by Microcystis 
cyanobacteria may be distinguished from those dominated by diatom/dinoflagellate eukaryotes on the 
basis of the magnitude of the MPH variable. This, we hypothesize, is due to an enlarged chl-a specific 
backscatter in the red/NIR associated with vacuolate cyanobacteria.  

Results: Distinction of cyanobacteria and eukaryotic phytoplankton 

Using a two-layered sphere model to simulate the optical properties of algae and cyanobacteria, 
evidence is presented for enhanced backscatter resulting from internal vacuoles in prokaryote species as 
opposed to eukaryotes and non-vacuolate prokaryotes. Two layered sphere population model results 
and radiometry are used to provide some evidence for the increased magnitude of the 709 nm 
reflectance observed in Microcystis dominant waters. Furthermore, a new flagging procedure based on 
cyanobacteria-specific spectral pigmentation and fluorescence features between 620 and 681 nm 
enables cyanobacteria-dominant waters to be further distinguished.  

mailto:MTTMAR017@myuct.ac.za


Applications: Time series analysis 

 

Time-series applications of the MPH algorithm and the 
cyanobacteria-flag to South African and global study 
areas demonstrate how these techniques might be 
applied for effective monitoring and frequency analysis 
of high-biomass cyanobacterial blooms. The MPH 
algorithm also provides a suitable alternative when 
targeting high-biomass (chlorophyll-a > 20 mg/m^3), 
turbid and spatially constrained waters since 
conventional ocean colour algorithms are generally 
poorly parameterised for use in these environments.  
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Figure 1 Chl-a versus MPH variable showing 

separation of cyanobacteria and eukaryotic algae 
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Summary 

The use of ocean colour data records for trend detection and climate research is presented, particularly 

in terms of requisites and challenges. A major concern is the existence of significant differences between 

mission‐specific  data  sets  that  need  to  be  properly  accounted  for  before  these  data  sets  can  be 

combined  for  time series analyses. The cases of  the  remote sensing  reflectance and  the chlorophyll‐a 

concentration are illustrated and their quality as consistent multi‐mission data records is discussed. 

Introduction 

Constructing  a  long‐term  record  of  ocean  colour  data  suitable  for  monitoring  activities  or  climate 

research  necessitates  a  suite  of  successive  satellite missions,  considering  that missions may  have  a 

typical  life  time of 5‐10  years. But  flying a  continuous  suite of missions  is obviously not  sufficient  to 

allow quantitative temporal analyses such as trend detection. First, each mission‐specific series needs to 

possess certain characteristics minimizing the possibility that variations in the data record be the result 

of changes  in the processing environment: a fully characterized calibration history of the  instrument, a 

consistent  set  of  ancillary  data,  a  stable  set  of  algorithms,  etc...  Then,  combining  data  records  from 

various  ocean  colour  missions  for  time  series  analyses  may  introduce  spurious  temporal  artifacts 

resulting from  inter‐mission systematic differences. Eventually, constructing a consistent multi‐mission 

data record requires a thorough knowledge of each mission‐specific series, and complete inter‐mission 

comparisons.  A direct implication is that this effort  is fundamentally connected to, and dependent on, 

mission temporal overlaps. 

The presentation will focus on the two ocean colour variables considered as essential climate variables 

(ECV) by GCOS [1], the spectrum of water‐leaving radiance (or remote sensing reflectance, RRS) and the 

concentration of chlorophyll‐a (Chla). In both cases, the emphasis is on inter‐comparison results and the 

implications in terms of data set consistency and trend detection. 

Analysis of the remote sensing reflectance data record 

A  complete  inter‐mission  comparison  is  conducted on  the SeaWiFS, MODIS‐Aqua and MERIS RRS data 

sets. This is done by accumulating the matching pairs of RRS spectra for each spatial bin and day over the 

periods  of mission  overlaps.  Before  comparison,  differences  in  spectral  band  specifications  between 

sensors are also accounted for using a bio‐optical model. 

The inter‐comparison statistics document two major characteristics of the RRS data sets. First, a spatially 

resolved estimate of the random error of the RRS uncertainty budget for SeaWiFS, MODIS and MERIS is 

computed through an analysis of variance and covariance terms over the comparison ensemble. Then, it 
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Abstract

Light attenuation in the Saint Lawrence Estuary (SLE) can be mainly attributed to changes on 
light  absorption  due  to  chromophoric  dissolved  organic  matter  (aCDOM)  and  detritus  (ad).  In 
coastal systems influenced by freshwater discharge, the magnitude of aCDOM and ad is inversely 
correlated with surface salinity. Therefore, salinity can be used as a complementary variable for 
obtaining more accurate optical closures in waters where optical properties are dominated by 
non-covarying components. This possibility was investigated using a hybrid inversion technique 
(hereafter OCSI) based on simulated surface salinity (Laboratoire d'analyse et de simulation des 
Systèmes océaniques,  LASSO) and satellite-based remote sensing reflectance measurements at 
440, 490 and 670 nm obtained from SeaWiFS (Sea-viewing Wide Field-of-view Sensor). OCSI-

derived  estimates  for  the  spectral  slope  (γ )  of  the  total  backscattering  coefficient  (bb)  were 
positively correlated with  bb ratios computed between two wavelengths, 450 and 532 nm, and 
obtained  in  surface  waters  (i.e.,  0-3  m)  of  the  SLE  during  Spring  2001.  In  general,  main 
uncertainties on OCSI products were related to errors on estimating aCDOM and detritus ad values 
based on surface salinity (relative bias up to 36.7%) and assuming a constant spectral slope of 
aCDOM during the survey (up to 43%).



The	
  performance	
  of	
  globally-­‐tuned	
  bio-­‐optical	
  algorithms	
  have	
  been	
  shown	
  to	
  vary	
  
in	
  different	
  oceanic	
  basins	
  (Szeto	
  et	
  al,	
  2011)	
  and	
  different	
  optical	
  environments	
  
(Moore	
  et	
  al,	
  2009).	
  	
  	
  As	
  a	
  consequence,	
  the	
  uncertainties	
  of	
  ocean	
  color	
  products	
  
based	
  on	
  these	
  algorithms	
  also	
  vary	
  spatially	
  and	
  are	
  not	
  uniform.	
  	
  	
  Single,	
  bulk	
  
statistics	
  without	
  regard	
  to	
  optical	
  environment	
  do	
  not	
  realistically	
  represent	
  how	
  
the	
  products	
  are	
  performing	
  spatially.	
  	
  	
  It	
  is	
  important	
  to	
  capture	
  the	
  spatial	
  
variation	
  in	
  product	
  uncertainty	
  for	
  assimilation	
  models	
  and	
  for	
  gaining	
  a	
  deeper	
  
understanding	
  in	
  how	
  to	
  focus	
  improvements	
  of	
  algorithms	
  to	
  reduce	
  	
  errors	
  in	
  
ocean	
  color	
  products.	
  	
  In	
  this	
  work,	
  we	
  present	
  our	
  results	
  of	
  uncertainty	
  analysis	
  
on	
  ocean	
  color	
  products	
  for	
  select	
  semi-­‐analytic	
  algorithms.	
  	
  We	
  compare	
  the	
  
distribution	
  of	
  uncertainty	
  from	
  matchup	
  data	
  sets	
  for	
  different	
  ocean	
  colors	
  
satellites	
  from	
  the	
  viewpoint	
  of	
  optical	
  water	
  types.	
  	
  We	
  also	
  examine	
  these	
  results	
  
in	
  the	
  context	
  of	
  how	
  the	
  uncertainties	
  are	
  spread	
  over	
  optical	
  water	
  types	
  using	
  the	
  
NOMAD	
  data	
  set.	
  	
  	
  While	
  using	
  matchup	
  data	
  sets	
  has	
  its	
  own	
  sources	
  of	
  error,	
  these	
  
comparisons	
  shed	
  light	
  on	
  how	
  algorithms	
  and	
  satellite	
  products	
  are	
  faring	
  for	
  
different	
  water	
  types	
  and	
  different	
  sensors.	
  	
  	
  The	
  approach	
  allows	
  for	
  a	
  mapping	
  of	
  
product	
  uncertainty	
  by	
  water	
  type	
  for	
  different	
  satellites.	
  	
  	
  These	
  are	
  companion	
  
(yet	
  independent)	
  products	
  associated	
  with	
  their	
  corresponding	
  ocean	
  color	
  
geophysical	
  products.	
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Abstract 

 
The bright pixel atmospheric correction (BPAC)[1] has been part of the operational processor for MERIS 
on ENVISAT since its launch, and is implemented for the proposed OLCI processor. The BPAC consists of 
a coupled atmosphere-hydrological model that is parameterised by the Ångström exponent, the 
properties of pure water and those of particulate matter in the near infra-red (NIR). The BPAC has been 
used in the operational processor for the MERIS, in order to correct for the multiple scattering [2] 
atmospheric correction for excess NIR reflectance in case 2 or other waters, where backscatter from 
particulates results in a significant NIR signal. As part of the evolution for the potential 4th reprocessing 
of the MERIS archive, and for the OLCI on Sentinel 3 the BPAC has been substantially upgraded. A new 
version of the BPAC has been developed for the 4th MERIS reprocessing; the revised algorithm uses an 
analytical solution, and in addition to modelling the spectral signature of particulates and atmosphere, it 
accounts for the specular scatter 
from sun glint. The hydrological 
model is fully described in the 
MERIS ATDB [3]. The model 
separates the spectral signature 
of particulates relying on their 
similarity spectra [4]. 
Hitherto the glint component in 
MERIS and other ocean colour 
sensors has been estimated from 
the wind-field and a Cox and 
Munk [5] or similar model of 
wave slope. This approach has 
disadvantages, since in terms of 
operational forecasting remote 
sensing the true wind field in not 
known in near real time. The 
modelled wave slope assumes 
that the wave field has reached a 
steady state and that there are 
no effects due to land. For the 
coastal zone, where the BPAC can provide NIR backscatter estimates, the wave-slope and wind-field can 
be influenced by the nearby land topography and the local bathymetry. The example image above are 
shows the retrieved glint from the Mediterranean Sea, where the surface signature of the internal 
waves radiating from the Straits of Gibraltar can be clearly seen. Such patterns of increased reflectance 
can potentially be confused with TSM or chlorophyll when glint is not fully corrected. Further examples 

Glint Extracted from MERIS - Mediterranean Sea 



of retrieved glint in coastal inlets, and around islands where noticeable wakes are visible will be 

presented... The retrieved glint is also compared with that derived from a Cox and Munk model [5]; The 

BPAC produces estimates of the spectral backscatter in the NIR, although these are not available as 

routine MERIS products. In contrast to the visible spectral regions currently used for geophysical 

algorithms, the NIR / Red spectral region shows relatively little CDOM absorption, thus the spectral 

backscatter provides a robust estimate of TSM. The TSM product is using in-situ data from the North-

Western Baltic Sea, a mesotrophic region in the south-west of Portugal and the NOMAD dataset. Using 

the NOMAD data, the potential to use the BPAC to provide a long term European time series of 

backscatter using MERIS is demonstrated. The spectral backscatter derived from the BPAC enables 

estimates of spectral absorption to be made in the red spectral region. The estimates of absorption are 

used to provide estimates of chlorophyll absorption, and the derived chlorophyll, since the pigment / 

packaging effect is considerably reduced at red wavelengths. The chlorophyll derived is validated using 

in-situ data from the North-Western Baltic Sea and the NOMAD dataset. 

The glint field providers a partial correction for the land ocean adjacency effect [6]. 
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Summary 

 
The results presented here demonstrate the strong potential of the spaceborne hyperspectral sensor 
HICO as a reliable tool for monitoring coastal water quality, which is critically relevant for coastal ocean 
color research, especially with the recent demise of MERIS. Two-band and three-band NIR-red 
algorithms, which have been used very successfully with MERIS data for estimating chlorophyll-a (chl-a) 
concentration in coastal waters, yielded accurate estimates of chl-a concentration when applied to HICO 
images. Given the uncertainties in the radiometric calibration of HICO, the results illustrate the 
robustness of the NIR-red algorithms, validate the radiometric corrections applied to HICO data as they 
relate to estimating chl-a concentration in productive coastal waters, and provide an indication of what 
could be achieved with future spaceborne hyperspectral sensors. 
 
Introduction 
 
Algorithms that use reflectances in the red and near infrared (NIR) regions of the spectrum are suitable 
for estimating chl-a concentration in optically complex coastal waters (e.g., [1]). NIR-red algorithms 
based on the spectral channels of MERIS have been shown to yield consistent, highly accurate estimates 
of chl-a concentration for inland and coastal waters from various geographic locations (e.g., [2,3]. The 
recent demise of MERIS has caused a potentially serious gap in the availability of reliable coastal ocean 
color data, considering the limitations of MODIS for coastal water quality analysis and the fact that no 
multispectral or hyperspectral sensor with characteristics that are similar to or better than those of 
MERIS is scheduled to be launched in the immediate future. In this study, we have used data collected 
from multiple campaigns on the Taganrog Bay to test the ability of the space borne Hyperspectral 
Imager for the Coastal Ocean (HICO) to provide accurate estimates of chl-a concentration and serve as a 
reliable tool for coastal water quality analysis. 
 
Discussion 
 
Four in situ data collection campaigns were undertaken on the Taganrog Bay between July and Sep 
2012, resulting in data from 31 stations, with chl-a concentrations ranging between 27.06 and 172.77 
mg m-3.  The following two-band [4] and three-band [1] NIR-red models were applied to HICO images 
acquired concurrently with in situ data collection:  

Two-Band HICO NIR-red Model:  708
1

665Chl RR-a        (1) 

Three-Band HICO NIR-red Model:   754
1

708
1

665Chl RRR-a       (2) 

mailto:wesley.moses@nrl.navy.mil


where, Rx is the reflectance at x nm and 665R  is the average of the reflectances at 662 nm and 668 nm. 

Both NIR-red models had close linear relationships with chl-a concentrations (Fig. 1), with determination 
coefficients of 0.83 and 0.86. The NIR-red algorithms were validated by the leave-one-out cross 
validation procedure and found to yield accurate estimates of chl-a concentration. For the two-band 
NIR-red algorithm, the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) were only 
13.52% and 10.89% of the total range of chl-a concentration; the corresponding figures for the three-
band NIR-red algorithm were 12.02% and 9.12%, respectively. The NIR-red algorithms were used to 
generate chl-a maps that accurately portrayed the spatial and temporal variation of chl-a concentration 
in the bay. 

Conclusion 
 
The accuracy of the results obtained illustrates the 
robustness of NIR-red algorithms and the potential of 
HICO as a reliable tool for monitoring water quality in 
coastal waters. It also validates the radiometric and 
atmospheric corrections applied to HICO [5] as they 
relate to estimating chl-a concentration. 
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Fig. 1. Plots of chl-a concentrations measured in 
situ versus the (a) two-band and (b) three-band 
NIR-red model values. 

Fig. 2.Chl-a map generated from a HICO image 

using the two-band NIR-red algorithm. 
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Summary	
  
	
  
Phytoplankton	
   groups	
   are	
   important	
   to	
   biogeochemical	
   and	
   food	
   web	
   processes.	
   	
   They	
   can	
   be	
  
determined	
  based	
  on	
  their	
  ecological	
  role	
  or	
  cell	
  size	
  and	
  are	
  able	
  to	
  be	
  optically	
  differentiated.	
  	
  In	
  this	
  
study,	
   the	
  Mouw	
  and	
  Yoder	
   (2010)	
  approach	
  that	
   retrieves	
  percent	
  microplankton	
   (>	
  20	
  μm)	
  within	
  a	
  
phytoplankton	
   community	
   is	
   utilized.	
   Variability	
   of	
   satellite-­‐derived	
   percent	
  microplankton	
   across	
   the	
  
global	
  ocean	
   is	
  explored	
   in	
   the	
  context	
  of	
   the	
  chlorophyll	
  concentration	
  record	
   from	
  the	
  SeaWiFS	
  and	
  
MODIS	
  missions.	
  	
  Empirical	
  orthogonal	
  function	
  analysis	
  is	
  used	
  to	
  identify	
  dominant	
  statistical	
  modes	
  in	
  
the	
   phytoplankton	
   size	
   and	
   chlorophyll	
   concentration	
   imagery	
   time	
   series.	
   	
   There	
   is	
   evidence	
   of	
  
temporal	
  and	
  spatial	
  decoupling	
  between	
  chlorophyll	
  and	
  phytoplankton	
  size.	
   	
  These	
  cases	
  over	
  broad	
  
regions	
   of	
   the	
   global	
   ocean	
   are	
   explored	
   in	
   depth.	
   	
   Implications	
   of	
   the	
   observed	
   variability	
   are	
  
investigated	
  in	
  the	
  context	
  of	
  biogeochemistry,	
  carbon	
  cycling	
  and	
  flux.	
  
	
  
Introduction	
  
The	
   ecology	
   and	
   biogeochemistry	
   of	
   the	
  world's	
   oceans	
   are	
   tightly	
   interconnected.	
   	
   The	
   physical	
   and	
  
chemical	
   environment	
   shape	
  microbial	
   community	
   structure	
  which,	
   in	
   turn,	
  mediates	
   biogeochemical	
  
pathways	
   including	
   the	
   export	
   of	
   organic	
   matter	
   to	
   the	
   deep	
   ocean	
   and	
   ocean	
   carbon	
   storage.	
  
Phytoplankton	
   are	
   a	
   key	
   part	
   of	
   this	
   community	
   and	
   their	
   functional	
   diversity	
   has	
   biogeochemical	
  
implications.	
   	
  Motivated	
  by	
   these	
   factors,	
   recent	
  efforts	
   to	
  observe	
   the	
  abundance	
  and	
  activity	
  of	
   the	
  
marine	
  phytoplankton	
  from	
  space	
  have	
  placed	
  emphasis	
  on	
  resolving	
  aspects	
  of	
  this	
  diversity;	
  notably	
  
broad	
   functional	
   and	
   size	
   classes.	
   	
   Satellite-­‐based	
   observations	
   are	
   revealing	
   the	
   variability	
   of	
  
phytoplankton	
  populations	
  on	
   inter-­‐annual	
   to	
  decadal	
   scales.	
   	
   Satellite	
   retrieved	
  estimates	
  of	
  percent	
  
microplankton	
   in	
   the	
   phytoplankton	
   assemblage	
   (Sfm)	
   [1]	
   and	
   semi-­‐analytical	
   inversion	
   retrieval	
   of	
  
chlorophyll	
   concentration	
   ([Chl])	
   [2]	
   are	
   considered	
   together	
   to	
   understand	
   the	
   relationship	
   between	
  
phytoplankton	
  size	
  and	
  [Chl].	
  	
  This	
  work	
  provides	
  a	
  quantitative	
  comparison	
  of	
  the	
  temporal	
  and	
  spatial	
  
relationship	
   between	
   these	
   parameters	
   for	
   near-­‐surface	
   global	
   ocean	
   waters	
   through	
   the	
   use	
   of	
  
empirical	
  orthogonal	
  function	
  analysis.	
  	
  	
  
	
  
Discussion	
  
Monthly	
   mean	
   percent	
   microplankton	
   [1]	
   and	
   [Chl]	
   [2]	
   imagery	
   time	
   series	
   were	
   investigated	
   with	
  
empirical	
  orthogonal	
  function	
  (EOF)	
  and	
  trend	
  analysis.	
  	
  EOF	
  analysis	
  is	
  used	
  to	
  simultaneously	
  examine	
  
both	
  temporal	
  and	
  spatial	
  variability.	
  	
  It	
  is	
  useful	
  for	
  compressing	
  the	
  spatial	
  and	
  temporal	
  variability	
  of	
  
time	
  series	
  data	
  into	
  a	
  series	
  of	
  orthogonal	
  functions	
  or	
  statistical	
  modes.	
  	
  The	
  temporal	
  variance	
  of	
  the	
  
data	
   can	
   be	
   partitioned	
   into	
   modes,	
   revealing	
   spatial	
   functions	
   having	
   time-­‐varying	
   amplitudes,	
   also	
  
known	
  as	
  principle	
   components.	
   	
  Prior	
   to	
  EOF	
  analysis,	
   temporal	
   gaps	
   in	
   the	
  data	
  were	
   filled	
  and	
   the	
  
data	
  were	
  temporally	
  demeaned.	
  	
  EOF	
  analysis	
  was	
  run	
  on	
  global	
  images	
  of	
  Sfm	
  and	
  [Chl]	
  individually	
  and	
  
jointly	
  (figure	
  1).	
  	
  The	
  individual	
  EOF	
  indicates,	
  that	
  with	
  the	
  exception	
  of	
  ENSO,	
  [Chl]	
  mode	
  1	
  amplitude	
  
time	
  series	
  displays	
  adjustments	
  to	
  the	
  seasonal	
  cycle.	
  	
  However,	
  the	
  Sfm	
  amplitude	
  time	
  series	
  suggests	
  
a	
  decreasing	
   trend.	
   	
  An	
  advantage	
  of	
   the	
   joint	
  EOF	
   is	
   that	
  both	
  variables	
  will	
  have	
   the	
  same	
  principle	
  
components	
   (time-­‐varying	
  amplitudes),	
   thus	
  making	
   it	
  easy	
   to	
  detect	
  and	
   interpret	
  common	
  temporal	
  
(seasonal)	
  patterns.	
  	
  The	
  mode	
  1	
  amplitude	
  time	
  series	
  of	
  the	
  joint	
  EOF	
  (figure	
  1)	
  is	
  very	
  similar	
  to	
  the	
  



mode	
   1	
   Sfm	
   individual	
  
amplitude	
   time	
   series,	
  
suggesting	
   the	
   dominant	
  
variance	
  in	
  time	
  is	
  related	
  
to	
   Sfm.	
   	
   Spatially,	
   the	
  
greatest	
   variability	
   in	
  
both	
   parameters	
   in	
   the	
  
equatorial	
   Pacific	
  
associated	
   with	
   ENSO.	
  	
  
The	
   locations	
   of	
   high	
  
variability	
   in	
   the	
   Sfm	
  
individual	
   and	
   Sfm	
   and	
  
[Chl]	
  joint	
  spatial	
  patterns	
  
correspond	
   to	
   regions	
   of	
  
the	
  ocean	
  identified	
  [3]	
  as	
  
having	
   significant	
  
temporal	
   trends.	
   	
   This	
  
spatial	
   correlation	
  
suggests	
   phytoplankton	
  
size	
   structure	
   plays	
   an	
  
important	
   role	
   beyond	
  
biomass.	
  
	
  
Given	
  ENSO	
  plays	
  such	
  a	
  large	
  role	
  in	
  global	
  spatial	
  and	
  temporal	
  patterns,	
  regional	
  analyses	
  were	
  also	
  
carried	
  out	
  to	
  understand	
  emergent	
  patterns	
  at	
  smaller	
  spatial	
  scales.	
  	
  EOF	
  and	
  The	
  decadal	
  climatology	
  
and	
  demeaned	
   trends	
  of	
   Sfm	
   and	
   [Chl]	
  were	
  determined	
   for	
   the	
  North	
  Atlantic,	
   Equatorial	
   Pacific	
   and	
  
Southern	
  Ocean	
  regions.	
  	
  
	
  
Conclusions	
  
The	
  EOF	
  analysis	
  indicates	
  Sfm	
  and	
  [Chl]	
  spatial	
  variability	
  are	
  not	
  identical,	
  indicating	
  phytoplankton	
  size	
  
is	
  not	
  simply	
  responding	
  linearly	
  with	
  [Chl].	
  	
  In	
  terms	
  of	
  climatology,	
  phytoplankton	
  size	
  generally	
  tracks	
  
chlorophyll	
  over	
  an	
  annual	
  cycle	
  but	
  deviations	
  from	
  a	
  linear	
  relationship	
  are	
  evident.	
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Figure	
   1.	
   Mode	
   1	
   empirical	
   orthogonal	
   function	
   analysis	
   performed	
   on	
  
chlorophyll	
  concentration	
  ([Chl])	
  and	
  phytoplankton	
  percent	
  microplankton	
  (Sfm)	
  
jointly.	
   	
   Spatial	
   eigenfunctions	
   for	
  Sfm	
  (top	
   left	
  panel)	
  spatial	
  eigenfunctions	
  for	
  
[Chl]	
  (top	
  right	
  panel),	
  and	
  time	
  varying	
  amplitudes	
  for	
  both	
  parameters.	
  Sfm	
  and	
  
[Chl]	
   (bottom	
  panel)	
  both	
  display	
   substantial	
   spatial	
   variability	
  associated	
  with	
  
significant	
  temporal	
  variability.	
  	
  It	
  is	
  important	
  to	
  note	
  that	
  Sfm	
  and	
  [Chl]	
  spatial	
  
variability	
   are	
   not	
   identical,	
   indicating	
   phytoplankton	
   size	
   is	
   not	
   simply	
  
responding	
  linearly	
  with	
  [Chl].	
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Summary 

 
The quality of ocean color retrieved products depends on accurate atmospheric correction, and this 
remains a challenging task. Despite the huge scientific contribution of Hyperspectral Imager for the 
Coastal Ocean (HICO) the spectral quality of this rapidly developed proof of concept instrument also 
presents challenges. The work presented here investigated different atmospheric correction approaches 
and the consequences for bio-optical algorithms when retrieving products such as absorption coefficient 
curves. The results from the approaches are of mixed quality, illustrating that HICO presents challenges 
for current off-the-shelf atmospheric correction algorithms. However, undertaking this ensemble 
approach where this is limited in situ data provides a greater understanding of the environmental optics 
and suggests future research that will ultimately lead to a solution that can be applied in an operational 
monitoring context. 
 
 
Introduction 
 
The Hyperspectral Imager for the Coastal Ocean (HICO) sensor is the first spaceborne hyperspectral 
imager designed specifically for the coastal environment. It became operational on the International 
Space Station in September 2009 and combines high signal-to-noise ratio, contiguous 10 nm wide 
spectral channels over the range 400 to 900 nm, and a scene size of 42 × 190 km, designed to capture 
the scale of coastal dynamics. The quality of ocean color retrieved products depends on accurate 
atmospheric correction, and this remains a challenging task. It has been demonstrated that assuming 
that sea-water absorbs all the light in the red and near-infrared (NIR) region of the spectrum, referred as 
the black-pixel assumption (Gordon & Wang, 1994 – GW94), introduces significant errors when applied 
in turbid waters. Numerous algorithms have been developed with alternative hypotheses taking into 
account non-negligible NIR ocean contribution to the measured signal. Further, the challenge of 
atmospheric correction is greater when the need is to retrieve products from areas with few in situ 
measurements. This is the case of the Paranaguá Estuarine Complex, located in south-eastern Brazil, 
which is a large interconnected subtropical estuarine system, hence frequently turbid and in an area 
with little resources for in situ radiometric data collection. 
 
Despite the huge scientific contribution of HICO the spectral quality of this rapidly developed proof of 
concept instrument also presents challenges. The near infra-red (NIR) wavelengths are noisy, which 
hinders the atmospheric correction. The work presented here investigated different atmospheric 



correction approaches and the consequences for bio-optical algorithms when retrieving products such 
as absorption coefficient curves. 
 
Since Jun 2011, 46 HICO images were acquired over the area or interest; 13 were largely free of clouds. 
For the same period 24 campaigns for monitoring the absorption coefficients of the three major 
optically active substances: colored dissolved organic matter, non-algal particles and phytoplankton 
were realized. At least five sample points were visited near the inlet giving a total of 105 samples. The 
atmospheric correction required for retrieving the bio-optical absorption coefficients was implemented 
using four different approaches: 
 

1) Convolution of the hyperspectral bands to “MODIS-like” multispectral bands, and then applying 
standard GW94 [1] atmospheric correction routines that NASA use for SeaWiFS and MODIS, with 
near-IR iteration turned on for coastal radiances, to reduce negative water-leaving radiance 
retrievals. This is processed by the NRL Automated Processing System (APS). 

2) An approach originally designed to correct Compact Airborne Spectrographic Imager (CASI) [2], 
which has the MERIS Bright Pixel approach included [3].  

3) The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) available in the 
ENVI software. Unlike the previous atmospheric corrections that interpolate radiation transfer 
properties from a pre-calculated database of modeling results, FLAASH incorporates the 
MODTRAN4 radiation transfer code.  

4) An image-driven approach in which the atmosphere reflectance (La) is calculated from a pair of 
adjacent pixels that are in and out of a cloud shadow, with the transmittance and irradiance 
estimated using the reflected radiance from the top of clouds [3]. The limitation of this method 
is that it requires distinctive cloud shadow in a near uniform water area, and this shadow cannot 
be from thin clouds. Also, it does depend on the assumption that La is nearly uniform for the 
study area. 

The results from the approaches are of mixed quality, illustrating that HICO presents challenges for 
current off-the-shelf atmospheric correction algorithms. However, undertaking this ensemble approach 
where this is limited in situ data provides a greater understanding of the environmental optics and 
suggests future research that will ultimately lead to a solution that can be applied in an operational 
monitoring context.  
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Summary 

The Partial Least Squares (PLS) regression technique is here used for the retrieval of the three 
phytoplankton size classes (micro-, nano- and pico-phytoplankton) from a nine-year time series of in situ 
particle and phytoplankton absorption measurements in the Mediterranean Sea (BOUSSOLE site). PLS 
models were established for the quantification of concentrations of total chlorophyll a (Tchl a), of the 
sum of 7 bio-markers pigments (DPs) and of pigments associated with micro-, nano- and pico-
phytoplankton separately. When training PLS models with a dataset including light absorption and HPLC 
pigment measurements from the Mediterranean Sea only, good accuracy in predicting the algal 
community structure and its temporal changes at the BOUSSOLE site was observed. A lower accuracy of 
prediction of phytoplankton size classes over the BOUSSOLE time series was instead revealed by PLS 
models trained with data from various locations of the world’s oceans. Similar performances between 
PLS models trained with both particle and phytoplankton absorption measurements open the way to an 
application of this approach also to absorption spectra derived from inversion of field or satellite 
radiance measurements.  

Introduction 

The PLS is a multivariate analysis technique that relates a data matrix of predictor variables to a data 
matrix of response variables by regression. Thus, the PLS method can be used for the prediction of one 
or several dependent variables from several independent variables [1]. This method is frequently used in 
chemistry for spectroscopy analysis but only scarcely applied in oceanography, e.g. for the retrieval of 
information concerning algal populations. An application performed by Stæhr and Cullen [2] showed, 
however, remarkable skills of PLS in predicting the fraction of chlorophyll biomass of the harmful algae 
Karenia mikimotoi. This led to hypothesize a potential PLS application also for the detection of other 
phytoplankton types in natural environment.  
Two extensive datasets of in situ light absorption and HPLC pigment measurements were used for 
training the PLS technique in order to retrieve concentrations of pigments associated with the three 
phytoplankton size classes (micro-, nano- and pico-phytoplankton). The fourth-derivatives of particle 
(ap(λ)) or phytoplankton (aphy(λ)) absorption spectra were selected as the predictor variables while 
concentrations of Tchl a, of the sum of 7 bio-markers pigments (DPs) and of pigments associated with 
the three phytoplankton size classes [3] were selected as the response variables. A first training dataset 
consisted of 716 simultaneous HPLC pigment and light absorption measurements collected during 
several cruises across the world in different years and seasons (hereafter denoted GLOCAL). A second 
training dataset comprised only data from the Mediterranean Sea (n=239, hereafter denoted MedCAL). 
The PLS trained models were tested using the nine-year time series (January 2003-May 2011) of 
absorption measurements at the BOUSSOLE site (n=484; Mediterranean Sea) and the predicted pigment 
concentrations were compared with those retrieved from HPLC pigment measurements. 



Discussion 

GLOCAL PLS trained models revealed good accuracy only in predicting Tchl a and total DPs content at 
the BOUSSOLE site. Predicted values of pigments associated with the three size classes separately were 
actually correlated with HPLC measured values (r2>0.42) but predictions were systematically 
overestimated for micro-
phytoplankton and underestimated 
for nano- and pico-phytoplankton. 
Algal biomass and concentrations of 
pigments associated with the three 
size classes were predicted with very 
good accuracy by the MedCAL 
trained PLS models. Predicted values 
were significantly correlated with 
the measured ones (r2>0.52) and the 
points were very close to the 1:1 
line. More importantly, ap(λ) and 
aphy(λ) trained models showed 
similar performances. MedCAL PLS-
predicted pigment concentrations 
reproduced satisfactorily HPLC 
pigment temporal changes over the 
entire BOUSSOLE time series (Fig.1).  

Conclusions 

The PLS technique represents an 
encouraging method for retrieving 
algal biomass and size structure 
from in situ absorption properties 
especially when models are trained 
with a regional dataset. Similar 
performances of ap(λ) and aphy(λ) 
trained models open the way to the 
application of the PLS method to 
absorption spectra derived from 
hyperspectral in situ or satellite 
radiances.  
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Figure 1 BOUSSOLE time series of pigment concentrations as derived 
from HPLC pigment measurements and from MedCAL trained PLS 
models. 
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Summary	
  
	
  

A	
  new	
  hyperspectral	
  bio-­‐optical	
  algorithm	
  was	
  developed	
  to	
  discriminate	
  phytoplankton	
  taxa	
  in	
  optically	
  
complex,	
  case	
  2	
  waters.	
  The	
  semi-­‐analytical,	
  phytoplankton	
  detection	
  with	
  optics	
  (PHYDOTax)	
  algorithm	
  
is	
   based	
   on	
   first	
   principles	
   of	
   bio-­‐optics	
   with	
   applications	
   to	
   biogeochemical	
   modeling,	
   testing	
  
phytoplankton	
  functional	
  type	
  (PFT)	
  models,	
  and	
  detecting	
  and	
  monitoring	
  harmful	
  algal	
  blooms	
  (HABs).	
  
PHYDOTax	
   can	
   presently	
   differentiate	
   among	
   diatoms,	
   dinoflagellates,	
   haptophytes,	
   chlorophytes,	
  
cryptophytes,	
  and	
  cyanophytes	
  with	
  its	
  existing	
  signature	
  library.	
  PHYDOTax	
  is	
  unique	
  as	
  it	
  discriminates	
  
between	
  dinoflagellates	
  and	
  diatoms,	
  a	
  distinction	
  historically	
  considered	
  challenging	
  using	
  chlorophyll-­‐
a,	
  other	
  pigments,	
  or	
  light	
  absorption	
  spectra	
  alone.	
  With	
  increased	
  availability	
  of	
  hyperspectral	
  imagery	
  
from	
   existing	
   satellites,	
   and	
   the	
   launch	
   of	
   new	
   satellites,	
   PHYDOTax	
   holds	
   promise	
   for	
   validating	
   PFT	
  
models,	
   modeling	
   biogeochemical	
   cycles,	
   and	
   monitoring	
   harmful	
   algae	
   in	
   optically	
   complex	
   coastal	
  
waters.	
   The	
   feasibility	
   of	
   applying	
   the	
   algorithm	
   to	
   other	
   imaging	
   spectrometers	
   (e.g.	
   the	
   AVIRIS	
  
simulation	
   of	
   Hyperspectral	
   Infrared	
   Imager-­‐	
   HyspIRI	
   and	
   the	
   Hyperspectral	
   Imager	
   for	
   the	
   Coastal	
  
Ocean	
  –HICO)	
  of	
  the	
  Monterey	
  Bay	
  is	
  explored.	
  
	
  
Introduction	
  
An	
   initial	
   goal	
   of	
   ocean	
   color	
   remote	
   sensing	
   was	
   to	
   estimate	
   global	
   phytoplankton	
   chlorophyll-­‐a	
  
biomass	
   in	
   case	
   1	
  waters	
   to	
   address	
   questions	
   related	
   to	
   the	
   ocean’s	
   role	
   in	
   carbon	
   uptake	
   and	
   the	
  
global	
   carbon	
   budget.	
   Over	
   time,	
   sophisticated	
   algorithms	
   evolved	
   to	
   address	
   more	
   than	
   just	
  
chlorophyll-­‐a	
  concentrations	
   in	
  case	
  1	
  waters	
   to	
   include:	
  deriving	
   inherent	
  optical	
  properties,	
   cell	
  bio-­‐
volume,	
   red-­‐tide	
   indices,	
   water	
   mass	
   detection,	
   and	
   primary	
   productivity	
   in	
   both	
   case	
   1	
   and	
   case	
   2	
  
waters.	
  The	
  bulk	
  chlorophyll-­‐a	
  pool	
  has	
  been	
  further	
  differentiated	
  to	
  quantify	
  the	
  incumbent	
  taxa	
  using	
  
pigment-­‐based	
   [1]	
   and	
   ocean	
   color	
   remote	
   sensing	
   algorithms	
   [e.g.	
   2].	
   These	
   phytoplankton	
  
discrimination	
   algorithms	
   are	
   varied	
   and	
   address	
   specific	
   questions	
   related	
   to	
   carbon	
   flow	
   through	
  
aquatic	
  ecosystems,	
  PFTs,	
  and	
  the	
  detection	
  and	
  monitoring	
  of	
  HABs.	
  	
  
	
  
The	
  Monterey	
  Bay,	
  CA	
  (USA)	
  is	
  an	
  open	
  bay	
  located	
  along	
  an	
  eastern	
  boundary	
  current.	
  Physical	
  forcing	
  
drives	
   nutrient	
   availability	
   to	
   phytoplankton	
   and	
   two	
   of	
   the	
   three	
   oceanographic	
   seasons	
   are	
  
characterized	
   by	
   dominant	
   phytoplankton	
   taxa:	
   Upwelling	
   (Mar	
   –	
   Aug)-­‐	
   diatoms	
   and	
   Oceanic	
   (Sep	
   –	
  
Oct)-­‐	
  dinoflagellates.	
  This	
  climatological	
  pattern	
  can	
  be	
  disrupted	
  within-­‐season	
  resulting	
   in	
  blooms	
  of	
  
mixed	
   assemblages	
   of	
   phytoplankton.	
   This	
   is	
   of	
   particular	
   interest	
   in	
   northern	
   Monterey	
   Bay	
   as	
  
extensive	
   dinoflagellate	
   blooms	
   occur	
   in	
   the	
   “red-­‐tide	
   incubator”	
   and	
   may	
   mask	
   co-­‐occuring	
   toxic	
  
diatom	
  blooms	
  that	
  pose	
  a	
  threat	
   to	
  ecosystem	
  and	
  human	
  health.	
  The	
  objective	
  of	
   this	
  study	
  was	
  to	
  
discriminate	
  phytoplankton	
  taxa	
  contained	
  within	
  algal	
  blooms	
  in	
  case	
  2	
  waters	
  using	
  first	
  principles	
  of	
  



bio-­‐optics	
   to	
   identify	
   both	
   the	
   presence	
   of	
   a	
   taxon	
   and	
   to	
   quantify	
   the	
   relative	
   proportions	
   of	
   taxa	
  
contained	
  within	
  a	
  bloom	
  to	
  address	
  the	
  need	
  to	
  detect	
  and	
  monitor	
  HABs	
  over	
  a	
  large	
  spatial	
  scale.	
  The	
  
algorithm	
  we	
  developed	
  can	
  also	
  be	
  applied	
  to	
  questions	
  related	
  to	
  validating	
  PFT	
  models	
  and	
  carbon	
  
uptake	
   within	
   the	
   coastal	
   zone,	
   a	
   region	
   where	
   the	
   understanding	
   of	
   carbon	
   flux	
   is	
   not	
   yet	
   well	
  
characterized.	
  
	
  
Results	
  and	
  Discussion	
  
PHYDOTax	
  is	
  composed	
  of	
  three	
  parts:	
  1)	
  a	
  signature	
  library	
  of	
  Rrs	
  for	
  phytoplankton	
  taxa	
  found	
  in	
  the	
  
coastal	
  ocean	
  derived	
  from	
  measured	
   inherent	
  optical	
  properties	
   (IOPs)	
  of	
  algal	
  cultures	
  and	
  radiative	
  
transfer	
  equations,	
  2)	
  an	
   inverse-­‐matrix	
  approach	
   to	
  deconvolve	
   the	
  signature	
   library	
   from	
  Rrs	
   spectra	
  
collected	
  from	
  natural	
  waters,	
  and	
  3)	
  the	
  computation	
  of	
  relative	
  proportions	
  of	
  the	
  total	
  chlorophyll-­‐a	
  
pool	
   represented	
   by	
   the	
   constituent	
   taxa.	
   Like	
   its	
   conceptual	
   predecessor,	
   CHEMTAX,	
   the	
   predictions	
  
from	
   PHYDOTax	
   are	
   dependent	
   on	
   the	
   taxa	
  
represented	
   in	
   the	
   input	
   signature	
   library.	
   The	
  
library	
  was	
  developed	
  using	
  IOPs	
  of	
  cultures	
  from	
  
thirteen	
   phytoplankton	
   species,	
   representing	
   six	
  
taxa	
   commonly	
   found	
   in	
  Monterey	
  Bay:	
   diatoms,	
  
dinoflagellates,	
   haptophytes,	
   chlorophytes,	
  
cryptophytes,	
   and	
   cyanophytes.	
   Validation	
   with	
  
synthetic	
  mixtures	
  confirmed	
  correlation	
  between	
  
algorithm	
   predictions	
   and	
   known	
   mixture	
  
proportions	
   for	
   all	
   taxa	
   except	
   Emiliana	
   huxleyi.	
  
Field	
   validation	
   in	
  Monterey	
  Bay,	
  CA	
   in	
  2006	
  and	
  
2010	
  demonstrated	
  a	
   strong	
  correlation	
  between	
  
measured	
  and	
  modeled	
  taxon-­‐specific	
  biomass	
  for	
  
all	
   taxa	
   except	
   cryptophytes	
   (cyanophytes	
   could	
  
not	
  be	
   field	
  validated).	
  PHYDOTax	
  was	
  applied	
   to	
  
hyperspectral	
  imagery	
  of	
  Monterey	
  Bay	
  from	
  2006	
  
and	
  it	
  predicted	
  a	
  bloom	
  with	
  proportions	
  of	
  >60%	
  
dinoflagellates	
   and	
   ~20%	
   diatoms;	
   a	
   pattern	
  
confirmed	
  with	
  in	
  situ	
  cell	
  counts.	
  
	
  
Conclusions	
  
PHYDOTax	
  is	
  one	
  of	
  the	
  first	
  bio-­‐optical	
  algorithms	
  to	
  discriminate	
  between	
  dinoflagellates	
  and	
  diatoms	
  
in	
  the	
  coastal	
  ocean,	
  a	
  distinction	
  historically	
  considered	
  challenging.	
  It	
  is	
  now	
  possible	
  to	
  track	
  carbon	
  
flow	
   through	
   either	
   diatom-­‐	
   or	
   dinoflagellate-­‐dominated	
   ecosystems	
   using	
   hyperspectral	
   remote	
  
sensing	
  imagery.	
  PHYDOTax	
  is	
  being	
  evaluated	
  in	
  calibration	
  and	
  validation	
  efforts	
  for	
  the	
  NASA	
  Coastal	
  
and	
  Ocean	
  Airborne	
  Science	
  Testbed	
  (COAST)	
  mission	
  in	
  Oct.	
  2011	
  and	
  the	
  HyspIRI	
  satellite	
  simulations	
  
(AVIRIS	
  airborne	
  imager)	
  in	
  2013	
  and	
  2014,	
  and	
  with	
  other	
  satellite	
  imagers	
  such	
  as	
  HICO.	
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Summary 

Time series of MODIS derived Chl-a and TSM at the locations of Dutch monitoring stations from 2003-

2011 were compared to in-situ observations. The MODIS results were obtained by applying the MUMM 

atmospheric correction and the Water optics Iterative Semi-analytical Processing suite of algorithms 

(WISP-algorithm). Within this algorithm choices can be made which spectral bands contribute to one of 

the subalgorithms for Chl-a, TSM and CDOM.  

Introduction 

Ocean Colour remote sensing in coastal zones with complex waters requires dedicated sensors with high 

radiometric accuracy, a dedicated spectral band set, specific atmospheric correction methods and 

algorithms that are able to separate Chlorophyll-a from TSM and CDOM in waters with highly variable 

concentrations of these components. Between MERIS and SENTINEL, the only usable sensor for this 

region is MODIS (and VIIRS in the near future). Therefore we have investigated the optimal combination 

of atmospheric correction and an semi-analytical algorithm to be able to continue providing these 

services. Using the MUMM atmospheric correction and an adapted version of the WISP algorithm we 

now are able to prove that Chl-a retrieval with MODIS at elevated TSM concentrations is possible; and 

that TSM retrieval is at least as good with MODIS as with MERIS.  

Discussion 

The WISP algorithm (Peters, in preparation) is a semi-analytical approach that uses an iterative scheme 

to calculate Chl-a, TSM, CDOM. Within the iterative scheme use is made of separate algorithms for each 

parameter. This allows the use (within the scheme) of band ratio’s for Chl-a determination and single 

band algorithms for TSM and CDOM calculation. The calculation is based on [1] LUTs and the 4th degree 

polynomial formulation for the reflectance function proposed by these authors. One other attractive 

aspect of the iterative approach is that per iteration a determination can be made if the water seems to 

contain high or low concentrations of Chl-a and TSM and to adapt the sub-algorithms (in terms of band 

choices) automatically to these concentration ranges. From literature we know that low Chl-a 

concentrations in waters with low TSM are best detected using blue-green band ratio’s, while in other 

cases the red-NIR band ratio provides better results. Similar choices for spectral bands are known for 

TSM algorithms. The WISP algorithm is therefore one of the first algorithms that adapts itself to various 

conditions. The algorithm is very successful in case-2 waters using the MERIS band set because of the 

presence of the 705 nm reference band. Since this band is missing in MODIS alternatives had to be 

investigated. For Chl-a estimations a value is calculated from the blue green band ratios (443/531, 



469/531, 488/531) in the cases that Chl-a is the only important optical active component in the water. In 

other cases either the band ratio 645/667 or 667/678 is used. Our investigations indicate that the ratio 

645/667 contains a clear Chl-a signal for stations close to the coast, while the ratio 667/678 contains the 

information on high biomass blooms in open waters. For TSM a green band was used in case of low 

concentrations; in case of higher concentrations we used a red band such as the 678 band. The WISP 

algorithm is semi-analytical; its parameterization is formulated based on generally accepted SIOP 

functions according to the SIOP models used in Hydrolight and e.g. in the Coastcolour Round Robin 

Simulations [2].  Phytoplankton absorption is based on the Bricaud functions; but for the North Sea the 

absorption at the Chlorophyll-a red absorption band (667 nm) is elevated based on earlier observations. 

Compared to the CoastColour simulations settings we chose a lower value for the scaling factor for the 

specific backscattering of mineral particles (0.31). 

  
Yearly Chl-a averages at the MWTL stations for MODIS 
versus in-situ for 2003-2011: R2: 0.78 Slope: 1.02, 
Intercept: -0.03, RMSE: 0.2, MEA: 0.17 

Yearly averages at the MWTL stations for MERIS versus 
in-situ for 2003-2011: R

2
: 0.89, Slope: 0.81, Intercept: 

0.11, RMSE: 0.13, MEA: 0.1 

Conclusions 

The correlation for the yearly geometric mean values is good, both for Chl-a and TSM, although the in-

situ station has about 10-20 observations per year while MODIS realizes between 200 and 800 

observations per station per year. We can conclude that this version of the WISP algorithm with the 

optimized selection of MODIS bands provides an effective determination of concentration both at the 

low end and high end of the values. Even at a distance of 2 km to the coast the values are still 

reasonable. We find that to improve the results even further, we need stripe removal algorithms and 

improved cloud flagging, especially at cloud edges.   
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Summary 

We present an innovative automated methodology developed to detect and classify oil spills and 
look-alikes in MODIS high resolution (250 m) and MERIS full resolution (300 m) top of atmosphere 
reflectance images. Oil spill detection in optical satellite imagery is very recent and there is a lack of 
detection algorithms in literature. Our aim is to provide an efficient tool for this detection and thus an 
additional and complementary cost-effective support to SAR oil spill monitoring of the marine 
environment. This OS detection procedure was developed within the Italian PRIMI project, as part of the 
PRIMI operational oil spill monitoring and an oil slick forecasting system. 

Introduction 

MODIS and MERIS sensors, thanks to their increased spatial resolution, large swath and short revisit time, 
are now able to resolve small oil spills [1] which represent a prime source of marine hydrocarbon pollution 
resulting from illegal discharge. Also, these optical sensors, with their near-real time data and availability 
free of charge, can complement SAR sensors routinely used in oil spill (OS) detection and thus provide a 
more cost-effective and timely detection approach. 

The mechanism behind MODIS (MERIS) oil feature detection mainly depends on the spectral information 
between oil and surrounding water (e.g. oil-water contrast) and illumination-view geometry  of the incident 
light and satellite (e.g. sun glint condition). Experimental results proved the detectability and observability 
of oil films on the sea surface with the MODIS sensor [2,3] but there is still a lack of automated detection 
procedures. 

Our oil spill detection procedure first determines where sun glint contamination is present in the image, 
since the relative oil/water contrast switches depending on the presence of glint. Then, a correction 
procedure (“image flattening”) is applied to the image to remove or at least minimize atmospheric and 
oceanic natural variability from top of the atmosphere radiances, so as to enhance oil-water contrast. Next, 
the flattened image is fed to a segmentation algorithm to obtain “oil spill candidate” cluster regions in the 
image, by discarding non-slick cluster regions. Finally, a set of “feature parameters”, defined to discriminate 
between slicks and look-alikes, are calculated for each OS candidate, leading to further non-slick pruning 
and to the assignment of a probability score to the remaining, most probable, OS candidates, the score 
expressing the likeliness of being a true OS. 

This OS detection procedure was also used pre-operationally and validated in the framework of the oil spill 
detection and forecast system developed during the Italian PRIMI project (PRogetto pilota Inquinamento 
Marino da Idrocarburi/ marine hydrocarbon pollution pilot project). 

Discussion 

This detection methodology was developed using a set of MODIS and MERIS images of oil spill cases in the 
Mediterranean Sea for which in situ validation observations are available. We built an OS database, 
consisting of 15 images and 161 slicks. The OS database can be considered representative of the 

mailto:andrea.pisano@artov.isac.cnr.it


Mediterranean oil slicks, given the variety of OS geometric (large and small illegal discharge OSs) and 
illumination/view characteristics. 

The definition of feature parameters (e.g. OS 
area, perimeter, oil-water contrast etc.) and 
scores is based on the spectral, geometric 
and statistical analysis carried out on the OS 
dataset, in which both slicks and look-alikes 
are known. This analysis has also allowed to 
estimate the threshold values associated to 
each feature. These parameters are used to 
eliminate most non-slick or look-alike cluster 
regions in an image and to assign a score to 
the remaining probable oil spills. 

The figure shows the representative steps of 

the OS detection methodology. The input 

image, containing the oil spill (in red ellipse 

of Fig. 1a and enlarged in Fig. 1b) to be 

detected, is the flattened  865 nm reflectance 

band relative to the MERIS sensor. By 

applying the OS detection algorithm to the 

input band, we obtain the cluster image shown in Fig. 1c, where grey regions represent both candidate oil 

spill and look-alikes. Finally, Fig. 1d shows the oil spill candidate image, after pruning and score assignment, 

where slicks are classified with score around 90%. 

The method has been tested over the entire OS dataset and demonstrated its capability to detect also small 

slicks coming from illegal discharges. Validation showed that the method was able to detect 85% of the 

known slicks of the database. Preliminary validation was also performed on OS cases outside the OS 

database with encouraging results. 

Conclusions 

We have developed a methodology for the automatic detection and characterization of oil spills in MODIS 

and MERIS satellite top of atmosphere reflectance bands, using a set of in situ certified oil spills (OS 

database) in the Mediterranean Sea.  This OS detection procedure was also used pre-operationally and 

validated in the framework of the oil spill detection and forecast system developed during the Italian PRIMI 

project (PRogetto pilota Inquinamento Marino da Idrocarburi/ marine hydrocarbon pollution pilot project). 
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Figure 1. (a) Input flattened image from MERIS (865nm band, 
August 7 2008 09:50 UTC, off Algeria), oil spill in red ellipse; (b) 
zoom of the OS area; (c) cluster image; (d) oil spill candidate image 
after pruning, with color-coded associated scores. 
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      Phytoplankton composition plays a major role in biogeochemical cycles in the ocean.  

The intensity of carbon fixation and export is strongly dependent on the phytoplankton 

community composition.  The approaches to characterize the phytoplankton community 

composition at a global scale can be roughly classified in two categories: modelling 

approaches and satellite-derived approaches.  In the modeling approach, data assimilation 

techniques can also be used to constrain the model to track observations time series and 

to optimize certain variables.   

   Models and satellite-derived approaches have been used to assess global changes in 

phytoplankton biomass and community composition at various time scales.  Temporal 

oscillations of phytoplankton biomass are often very variable.  The number, timing and 

magnitude of annual blooms may differ remarkably among locations. In this study we 

compared the functional response of a numerical model (NASA Ocean Biogeochemical 

Model, NOBM; Gregg et al., 2003) versus an empirical algorithm (Hirata et al., 2011) in 

describing the spatial distribution and seasonal variation of four phytoplankton groups 

phytoplankton (diatoms, cyanobacteria, coccolithophores and chlorophytes) globally and 

in 12 major oceanographic basins. Global mean differences of all groups were within 

~15% of an independent observation data base for both approaches except for satellite-

derived chlorophytes.  Diatoms and cyanobacteria concentrations were significantly (p < 

0.05) correlated with the independent observation data base for both methods. 

Coccolithophore concentrations were only correlated with the in situ data for the model 

approach and the chlorophyte concentration was only significantly correlated to the in 

situ data for the satellite-derived approach.   

      This comprehensive global comparison of a data assimilating biogeochemical model 

and a satellite-derived approach with extensive in situ archives indicate an overall good 

agreement of the spatial distribution and seasonal variation in phytoplankton community 

composition.  Using the model, high diatom concentrations were spatially more 

widespread than using the satellite-derived approach (Figure 1).  For example, the North 

Pacific was the region where the model identified the highest diatom concentration (0.33 

mg m
-3

) whereas the satellite-derived average concentration was 0.15 mg m
-3

.  Although 

not as productive (in terms of chlorophyll concentration) as the northernmost latitudes, 

Antarctic was also a region of abundant diatoms and where both approaches differed.     

Both approaches agreed on the overall distribution of cyanobacteria, except for high 

latitude and upwelling regions.  For example, the satellite-derived approach identified the 

North Atlantic and Pacific as the regions with highest cyanobacteria concentrations 

(~0.05 mg m
-3

, Figure 2 & 3) whereas the model detected low cyanobacteria 

concentrations (<0.01 mg m
-3

)
 
in these two regions.  This was also the case for the 
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Antarctic where satellite-derived cyanobacteria concentrations were of ~0.04 mg m
-3

, 

while the model did not identify the presence of any cyanobacteria in this region.   

 

 
   Using monthly means from 2002-2007, the seasonal variation from the satellite-derived 

approach and model were significantly correlated in 11 regions for diatoms and in 9 for 

coccolithophores but only in 3 and 2 regions for cyanobacteria and chlorophytes.  Most 

disagreement on the seasonal variation of phytoplankton composition occurred in the 

North Pacific and Antarctic where, except for diatoms, no significant correlation could be 

found between the monthly mean concentrations derived from both approaches.  

Chlorophytes were the group for which both approaches differed most and that was 

furthest from the in situ data.  These results highlight the strengths and weaknesses of 

both approaches and allow us to make some suggestions to improve our approaches to 

understanding phytoplankton dynamics and distribution. 
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Figure 1:  Climatology (1998-2007) of the spatial distribution of diatoms and cyanobacteria 
using the satellite-derived approach and the NASA Ocean Biogeochemical Model.  Note that the 
satellite-derived prokaryotes are compared to cyanobacteria from the model. 

http://gmao.gsfc.nasa.gov/research/oceanbiology/reprints/Rousseauxetal_2013.pdf
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Summary 

It is well-known that for turbid waters there is a maximal value for the marine reflectance, termed here 
the “saturation reflectance”. As suspended particulate matter concentration increases, marine 
reflectance tends asymptotically towards this “saturation reflectance” limit. This limit has previously 
been considered as not useful for remote sensing purposes and, for example, suspended particulate 
matter retrieval algorithms generally avoid exploiting data close to the saturation reflectance. In the 
present study it is shown that important new information can be extracted from the saturation regime. 
The saturation reflectance is analysed here using radiative transfer simulations, satellite data and in situ 
reflectance measurements in highly turbid waters. 

Introduction 

Ocean colour remote sensing is now well-established as a method for mapping of concentrations of 
optically active water constituents. Satellite-based ocean colour sensors provide daily maps of 
parameters such as suspended particulate matter (SPM) concentration by inversion of models relating 
marine reflectance to inherent optical properties such as absorption, a, and backscattering, bb , 
coefficients. It is relatively well-established [1] that the marine reflectance tends towards an asymptotic 
limit, termed here “saturation reflectance”, for infinitely increasing SPM concentration. As this limit is 
approached the marine reflectance for a given wavelength becomes less and less sensitive to changes in 
concentration. For example, the in situ measurements of [2] (see Figure) show almost no variability of 
water reflectance for the wavelength range 400-550nm while SPM varies between 39 and 527 mg/l, 
whereas significant variation is found for wavelengths 700-1000nm, monotonically increasing with SPM.  

Because of the reduction in sensitivity to SPM concentration it is sometimes recommended that the 
asymptotic limit be avoided for ocean colour remote sensing applications, for example by preferentially 
using wavelengths with higher pure water absorption where the saturation effect is only reached for 
correspondingly higher concentrations [3, 4]. While it is true that as reflectance approaches the 
saturation reflectance there is less and less information on particulate concentration, there is conversely 
more and more information relating to particulate type or, more specifically, bbp/ap, the 
backscatter:absorption ratio of particles. This is in turn related to the refractive index and size 
distribution of particles. This information is valuable and is currently not adequately exploited in ocean 
colour remote sensing data. 

Discussion 

Investigation of the saturation reflectance is beyond the scope of most analytical marine reflectance 
models. Models, which are based on the quasi-single scattering assumption, typically express 
reflectance as a linear or quadratic function [5] of bb/(a+ bb), and do have an asymptotic limit for high 



bb/a. However, the limit given by such models is simply incorrect, by a factor that can exceed two. Better 
modelling of the saturation reflectance can be achieved by the use of a two-flow irradiance 
approximation, as used for example by [4], since this model is more appropriate for highly diffusive 
media with strong multiple scattering.  

 

Reflectance spectra measured in the Loire Estuary for different SPM concentrations. Background figure 
reproduced from [2]. 

In this study radiative transfer simulations are made to investigate how the saturation depends on 
optical properties of particulate matter. Approximate analytical models are tested against the radiative 
transfer simulations. In situ reflectance measurements and satellite data for extremely turbid waters are 
used to validate the findings of the radiative transfer simulations.  

Conclusions 

Water reflectance in turbid waters is limited by a maximal value, termed here saturation reflectance. 
This saturation reflectance cannot be modelled using typical analytical models giving marine reflectance 
as a linear or quadratic function of bb/(a+ bb). The value of saturation reflectance depends on bbp/ap and  
the particle volume scattering function. This suggests that remote sensing for saturated wavelengths will 
provide information on particle type to complement the information on particle concentration that can 
be retrieved from unsaturated wavelengths. 
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Summary 
We present a method to calibrate and validate bio-optical models that interrelate derived ocean color 
products to the governing bio-geophysical variables.  
The match up set of ocean color observations and measurements is subdivided into calibration (Cal) and 
validation (Val) data sets. Each Cal/Val pair is used to derive the coefficients (from the Cal set) and the 
accuracy (from the Val set) of the bio-optical model. 
Combining the results from all Cal/Val pairs provides probability distributions of the model coefficients 
and model errors.  The results demonstrate that the method provides robust model coefficients and 
quantitative measure of the model uncertainty. This approach is easily scalable to different model 
structures and can be applied to infer the accuracy of ocean color algorithm products. 
 
Introduction 
In this paper we present the stochastic approach of Salama et al. [1] for selecting calibration and 
validation (Cal/Val) sets and demonstrate its use for ocean color bio-optical models. The approach 
combines the bootstrapping method of Efron and Tibshirani [2] with the Jackknife technique (which 
leaves out one, or more, observation) and adapts the sample size at each iteration. Bootstrapping and 
Jackknife methods are usually used to provide the standard error of the derived “plug in” estimates and 
have been employed for validating ocean color models. However, the combination of bootstrapping 
without replacement with Jackknife sampling and changing the sample size, at each iteration, is novel 
and provides not only the accuracy of regressed estimates, but also the underlying probability 
distribution of regressed estimates and their errors. The developed method samples from a complete 
matchup set to populate many sets of Cal/Val pairs. Each pair is used to derive the model coefficients 
and their associated errors, from which the probability distributions of the calibration and validation 
result is determined.  
The method is demonstrated for matchups of chlorophyll-a (Chl-a) concentrations and derived 
absorption coefficients obtained from the NASA bio-Optical Marine Algorithm Data (NOMAD, version 2a 
[3]). The general practice is to derive the absorption coefficients from the observed radiance spectra 
using semi-analytical ocean color models (e.g. Salama and Shen 2010). Lambert-Beer law is then 
employed to estimate the absorption per unit mass from derived absorption coefficients and measured 
concentrations as: 

           
          (1) 

Where       is the absorption coefficient of Chl-a in m-1,      
  absorption per unit concentration of Chl-

a in m2.mg-1,       the concentration of Chl-a in mg.m-3 and   is an offset term in m-1. The presented 
method is applied on the n (424) match-up data points to derive      

  and    from Eq. (1) using the 
GeoCalVal model [1]. 
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Figure 1: (a) 
determination 
coefficient between Cal 
and Val sets;   
(b, c) derived probability 
distributions of model 
coefficients and 
uncertainties. 

Discussions 
The determination coefficients, R2, of the Cal set are plotted against those of the Val set in Fig. 1-a for all 
possible combinations. The data point position with respect to the x-axis is an indication for the ability of 
the model to fit the matchups of the Cal set, whereas its position with respect to the y-axis represents 
the model’s performance in deriving Chl-a absorption coefficient. NOMAD matchup produces a narrow 
region of Cal/Val pairs, for which the 
calibration R2 is similar to validation R2, about 
0.75–0.85 (light-grey coloured data points in 
Fig. 1-a. In other words, within these Cal/Val 
subdivisions the model validity and the 
accuracy assessment are balanced. This region 
defines the optimal setups for subdividing 
matchups into Cal/Val sets. The underlying 
mechanisms of the data points in this region 
are investigated further. We found that the 
optimal Cal/Val sets are obtained when the 
arithmetic mean and dispersion of each set are 
equal to those of the original data set. Figures 
1-b,c show the derived probability 
distributions (PD) of model coefficients, and 
the associated uncertainties, for the NOMAD 
matchup set. The resulting PD of model’s slope 
     
  have high kurtosis (acute peak around 

the mean) values and flat tails, i.e. more prone 
to outliers. The reason for having flat tails is due to the fact that the accuracy of model coefficients 
depends on the size of the Cal set. In other words, for a large Cal set we expect to have higher accuracy 
as most data points are used; however, this makes them also sensitive to outliers in the Val set, because 
most of the data points have been used to create the Cal set. The proposed method reveals the shape of 
the underlying probability distribution without any a priori assumption on its parameters (e.g. degree of 
freedom). In the shown example (linear model of Eq.1), the t-probability density function (fitted black 
lines in Fig. 1-b and c) should be employed to describe the distributions of model coefficient and 
uncertainties. For non-linear models there is no straightforward theoretical approximation of the 
expected probability distribution. If we would follow the theory, we would have no means to justify our 
assumption on the underlying probability distribution and its parameters.  
Conclusions 
i– The method provides an optimal setup for subdividing matchups into Cal/Val sets; ii– The coefficients 
and associated uncertainties of linear observation models follow the t-location scale distribution; iii– the 
optimal Cal/Val sets are obtained when the arithmetic mean and dispersion of the Cal/Val sets are equal 
to those of the original data set; iv– the presented method is applicable to any data set and can be 
adjusted to any observation model regardless of the application area. 
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Summary 

The detection of long-term trends in geophysical time series is a key issue in climate change studies. This detection 

is affected by many factors: the amplitude of the trend to be detected, the length of the available datasets, and the 

noise properties. Although the auto-correlation observed in geophysical time series does not bias the trend 

estimate, it affects the estimation of its uncertainty and consequently the ability to detect, or not, a significant 

trend.  Ignoring the auto-correlation level typically leads to an over-detection of significant trends.  

Satellite time series have been providing remote observations of the sea surface for several decades. Due to 

satellite lifetime, usually between 5 and 10 years, these time series do not cover the same period and are acquired 

by different sensors with different characteristics. These differences lead to unknown level shifts (biases) between 

the datasets, which affect the trend detection.  We propose here a generic framework to address the detectability 

of a linear trend and its significance from multi-sensor datasets. 

 

Introduction 

From a methodological point of view, we extend the statistical analysis of linear trends in single-sensor time series 

in presence of auto-correlated noise [Tiao et al., 1990; Weatherhead et al., 1998] to multi-sensor time series. In 

particular we address both time overlaps and time gaps between time series. We report and discuss an application 

to the MERIS and the SeaWiFS chl-a datasets, which clearly demonstrate the gain of this joint analysis.  

We investigate how also the time overlap between successive satellite missions could be optimized to improve the 

detectability of long-term trends  and exploit the proposed statistical methodology to evaluate the duration of the 

S3-OLCI observation series required to improve the joint SeaWiFS-MERIS trend detection based on the hypothesis 

that the OLCI-MERIS level shift uncertainty will be of the same magnitude than the SeaWiFS-MERIS one. 

 

Discussion 
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Given a two-sensor dataset, we assume that the two time series share the same long-term trend and seasonal 

patterns but involve an unknown level shift and correlated noise processes: 

                                  with                       

                                     with                       

where the time t is in any case relative to the start of the first time series, which is considered as the reference. T0 

is the starting time of the second time series, and n1, n2, are respectively the length of the first and second time 

series. μ and ῳ are respectively the intercept term and the linear trend shared by the two time series. δ is the 

unknown level shift of the second time series compared to the first one, supposed here as constant in time and N1  

and N2 the first order residuals (AR1).  The trend uncertainty   ̂  can then be expressed as a function of the 

weighted white noise variances and the trend coefficient uncertainty,                      with DT the 

overlap or time interval between the two time series and α the correlation coefficient between the two white noise 

processes.  

 
Figure 1: Estimated significant trend estimated from  the multi-sensor model using the SeaWiFS and the MERIS 

dataset (1998-2011).  

Conclusion 

When two time series are available, the trend detection depends on the uncertainty on the level shift between the 

datasets. In case of an overlap, the shift uncertainty is diminished. The use of the joint chl-a SeaWiFS-MERIS dataset 

over the period 1998-2011 led to the detection of 60% of significant trends, compared to 41 % for the SeaWiFS 

dataset only and 50% for the MERIS dataset only, contributing to a better characterization of region-specific 

patterns in the detected trends. Using the same model, we estimated the minimal region-dependent duration of 

the Sentinel 3 - OLCI mission necessary to improve the detection of long-term linear trends issued from the 

SeaWiFS-MERIS dataset. We estimated a mean value of 53 months for the needed Sentinel 3 – OLCI observations, 

with some region-dependent fluctuations between 40 to 68 months. This simulation was carried out using an 

uncertainty level on the shift between OLCI and MERIS of the same magnitude than the one estimated between 

SeaWiFS and MERIS. These results are coherent with the expected lifetime of the Sentinel 3-OLCI mission, and 

suggest that the analysis of the global long-term patterns should actually benefit from the joint analysis of SeaWiFS, 

MERIS and Sentinel 3-OLCI datasets. 
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Summary 

The provision of continuous (cloudless) daily fields of chlorophyll-a (chl-a) remains today a challenge. Such products 
are nevertheless of great interest for users and modellers.  We propose here a simple methodology to merge the 
chl-a fields estimated using several algorithms depending on their validation results on determined water types. 
The merged fields of chl-a are then optimally interpolated to provide the global MyOcean II chl-a analysis at 4 km 
resolution and the Atlantic MyOcean II chl-a analysis at 1km resolution. The validation results performed using 
matchups show a clear added value of both, the merging of algorithms and the spatio-temporal interpolation. The 
level 4 chl-a analyses are available on a daily base using the MyOcean II facilities. 

 

Introduction 

Many algorithms are available for the community to estimate the chl-a concentration from satellite data. The OCx 
algorithms were calibrated for open ocean (case 1) waters, where the observed spectral shape is constrained by 
the water and the chl-a absorption spectrum. In coastal waters, the reflectance of the suspended matters and the 
absorption of the yellow substances influence also the observed spectrum.  Today, many ‘regional’ algorithms have 
been derived by the scientists to estimate the chl-a locally. We propose here to determine reference water types 
from the shape of in-situ radiometric profiles.  Once the reference water types estimated, we use the membership 
probability of the satellite derived spectrum to merge the chl-a fields in an optimal way for the end user, i.e. the 
‘best’ algorithm is used on its better domain.  

 

Discussion  

We used 7952 in-situ spectra, extracted from the MERMAID database (http://hermes.acri.fr/mermaid) that gathers 
today more than 30 independent datasets including the NOMAD and AERONET-OC datasets. Each spectrum is 
defined using 6 wavelengths: 412, 442, 490, 510, 555 and 670 nm. These in-situ measurements have been gathered 
all over the word and the sampling is considered therefore as representative of the natural variability. The distance 
used in the segmentation procedure is the mean angle between a reference and the observed spectrum: 

        (∑
  ( )       ( )

|  | |      | )         (1) 

We use and iterative procedure and after convergence, 3 reference spectra were defined: for clear waters, chl-a 
dominated waters, and coastal waters. The posterior probability of a spectrum i to belong to the water type k is 
estimated as: 
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The most popular chl-a algorithms were validated on each water type and the ‘better’ chl-a algorithm is in the 

merging procedure. To ensure a continuous transition between the algorithms & the water types, the merging 
between the algorithms is obtained as a weighted sum, depending on, the probability P to belonging to the water 
types. 
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               (3) 

Once the chl-a merged (Figure 1, left), we use the simple kriging estimator with a regional estimation of the 

covariance structure to interpolate the chl-a fields (Figure 1, right): 
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Figure 1: left, the water-typed merge of daily chl-a fields (here 3 different algorithms were used).  Right, the 

corresponding daily optimal interpolation provided in MyOcean II. 

 

Conclusions 

The daily spatial coverage has increased from 14 % for the MODIS daily coverage at global scale, to 90 % for the 
analysed product and from 14% to 90% over the Atlantic. Results of the analyses validation show the same quality 
in term of bias and standard deviation compared to the merged fields of chl-a, with an increase of in mean X4.5 of 
the number of matchups. Using GSM only the results of the matchups were nb= 217, S= 1.23, R=0.74, Bias = 0.06, 
while for the merged chl-a fields the results were nb= 279, S= 1.13, R=0.79, Bias = 0.03 underlying the added value 
of the merging of chl-a fields derived from different algorithms approach adopted for MyOcean 2.  
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Summary 
A new Case II water color satellite algorithm to estimate primary production (PP) has been generated 
and evaluated for Lake Michigan. The Great Lakes Primary Productivity Model (GLPPM) is based on a 
mechanistic model that utilizes remotely sensed observations as input for some variables. The Color 
Producing Agent Algorithm (CPA-A) [1] is a full spectrum three color component retrieval approach used 
to derive chlorophyll a values and the diffuse attenuation coefficient (Kd) for Photosynthetically Active 
Radiation (PAR).  Satellite derived PP estimates were used to estimate a preliminary Lake Michigan 
annual primary production of 8.5 Tg C/year.  The new algorithm can be used to generate PP time series 
estimates dating back to late 1997 and will contribute to improved assessment of Great Lakes primary 
productivity changes as a result of Dreissenid mussel invasions, climatic change and anthropogenic 
forcing. 
 
Introduction 
The rate of primary production (PP) is a fundamental property of aquatic systems and measurements of 
primary production are critical to our understanding of those ecosystems.  The amount of primary 
production can determine the amount of matter and energy available to higher trophic levels and is thus 
an important measure for management decisions. While simulated in situ experiments provided 
accurate estimates of primary production in small volumes of water their application to large lakes was 
limited.  Moreover, these in situ and simulated in situ experiments provide an integrated measure of 
production that is dependent of many variables, (e.g. phytoplankton biomass, light, temperature, etc.), 
thus limiting their predictive value. In the early 1970s, Fee [2] developed a mechanistic modeling 
approach that could provide estimates of primary production based on a limited number of input 
parameters, i.e., chlorophyll, incident irradiation, and photosynthesis-irradiance parameters.  The Great 
Lakes Primary Production Model (GLPPM) is a satellite based implementation of the Fee model following 
the methods of Lang and Fahnenstiel [3]. The purpose of this program is to develop, evaluate and utilize 
a new remote sensing approach for estimating primary production in Lake Michigan. This method is an 
improvement over previous methods in that it requires less input than the wavelength resolving method 
of Lohrenz et al. (2004, 2008) and utilizes more robust satellite chlorophyll retrievals from ocean color 
sensors such as MODIS.  Because high quality continuous remote sensing imagery exists back to 1997 
(SeaWiFS), the application of remote sensing  approaches allow one to determine lake-wide primary 
production in response to  various stressors such as invasive species, climate change, oligotrophication, 
and anthropogenic forcing.   
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Discussion 
The GLPPM was implemented in Lake Michigan using MODIS reflectance imagery along with Lake 
specific rates of photosynthesis as a function of irradiance.  The GLPPM uses chlorophyll a 
concentrations estimated from the full spectrum three color component Color Producing Agent 
Algorithm (CPA-A) retrieval approach. The CPA-A uses lake specific Inherent Optical Property (IOP) cross 
sections as input to solve the inverse radiative transfer equation with respect to water constituent 
concentration.  GLPPM production estimates were compared to in situ production observations for a 
single year to assess GLPPM accuracy.  The GLPPM performs best in the spring and fall when the 
euphotic zone is well mixed, while it underestimates during periods of water column stratification in the 
summer. The GLPPM was applied to three dates in early April 2007, 2008, and 2009 to investigate the 
annual variation in Lake Michigan production. This analysis clearly showed that late winter/early spring 
primary productivity varies significantly in space and time at both nearshore and offshore regions. The 
new GLPPM enables, for the first time, estimates of lake-wide primary production.  Using four dates in 
2008 (Figure 1) and extrapolating to the shoreline for 
hatched areas, lake-wide production was calculated, 
excluding Green Bay, to be 9922 mt/d for March 20, 
18846 mt/d for May 12, 33569 mt/d for July 5, and 32845 
mt/day for September 1.  Furthermore, if one assumes 
these individual dates to be representative of longer time 
periods, preliminary annual lake-wide primary production 
can be calculated.  A preliminary estimate of annual lake-
wide primary production is approximately 8.5 Teragrams 
(Tg) of carbon fixed per year.  This annual production 
represents approximately 0.02% of the global oceanic 
annual carbon fixation.  
 
Conclusions 
The satellite based GLPPM was developed for Lake Michigan using Great Lakes specific chlorophyll a 
concentrations and photosynthetic rates.  The model compared well with in situ observations 
particularly in the spring and fall when the lake is not yet stratified. The GLPPM is able to provide, for 
the first time, accurate lake wide production estimates that can be used to examine spatial and 
temporal trends as well as derive yearly total carbon fixation estimates.  These observations over time 
provide insight into the effects climate change, invasive species, and anthropogenic forcing have on 
Great Lake ecosystems. 
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Figure 1. 2008 seasonal primary production 
estimated from the GLPPM 
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Summary 

Daily ocean colour observations from MODIS‐Aqua have been used to map the inter‐annual extent of 
riverine freshwater flood plumes into the Great Barrier Reef (GBR) lagoon between 2002 and 2010. To 
enable a reliable mapping of low salinity waters we applied a regionally adapted physics‐based coastal 
ocean colour algorithm [1],[2], that simultaneously retrieves chlorophyll‐a, non‐algal particulate matter 
and coloured dissolved organic matter (CDOM), from which we used CDOM as a surrogate for salinity (S) 
for mapping the freshwater plume extent. 

Introduction 

Riverine freshwater plumes are the major transport mechanism for nutrients, sediments and pollutants 
into the Great Barrier Reef (GBR) lagoon and connect the land with the receiving coastal and marine 
waters. Knowledge of the variability of the freshwater extent into the GBR lagoon is relevant for marine 
park management to develop strategies for improving ecosystem health and risk assessments. The 
inverse correlation between CDOM and S makes CDOM a useful tracer for lower salinity flood waters. In 
the open ocean, CDOM absorption originates predominantly from bacterial decomposition of 
phytoplankton cells, whereas in coastal waters, CDOM is dominated by humic and fulvic acids of 
terrestrial origin transported to the seas through freshwater runoff from the land as well as 
autochthonous CDOM from salt marshes, mangroves, inter‐ and sub tidal benthic microalgae, sea 
grasses, macro‐algae and corals. Water types in the GBR, especially during the wet season, are a 
complex mixture ranging from clear blue oceanic waters to extremely turbid waters affected by river 
run‐off and with high concentrations of suspended matter (up to 300 mg m‐3) and dissolved organic 
material (CDOM absorption at 443 nm up to 2 m‐1). River runoff in the GBR is highly seasonal and 
correlated with precipitation, with two‐thirds of annual rainfall occurring during the wet season from 
December to April. In addition, there is a large inter‐annual variability in precipitation and runoff 
observed depending on the intensity of the monsoon and the frequency of tropical cyclones.  

The optical complexity of the GBR coastal waters especially during run‐off conditions requires a model 
or physic‐based inversion approach to distinguish the overlapping absorption features of phytoplankton, 
non‐algal particulate matter and CDOM. In this study, CDOM absorption across the entire GBR World 
Heritage Area (coast line ~2,300 km) was estimated from a semi‐analytical model with variable specific 
inherent optical properties [2]. Spatially coherent sampling of such a large area is not feasible with in‐



situ methods. The application of remote sensing in the GBR however provides a fast and efficient tool 
for large scale monitoring. 

Discussion and conclusions 

For each wet season between 2002 and 2010 the freshwater extent was estimated from daily MODIS 
measurements (Fig. 1) by applying a threshold of 0.24 m‐1 to maps of seasonally aggregated maximum 
CDOM absorption at 443 nm. The CDOM absorption threshold was derived from linear regression of 250 
concurrent in‐situ CDOM and salinity measurements covering the inner most GBR lagoon and 
corresponds to a salinity of S=30. This rather conservative threshold was established to enable robust 
automated image classification and to avoid mapping of any autochthonous CDOM production within 
the reef matrix. Further, the selected threshold is of ecological relevance as some coral species in the 
GBR have been reported to bleach at a salinity level of S=30 depending on exposure period and water 
temperature.  

 

Fig. 1. Pseudo true‐colour image of a sub‐region in the central GBR (Burdekin) (A) captured by MODIS‐Aqua on 02 
Feb 2005 and associated CDOM absorption at 443 nm (B) and calculated freshwater plume extent with salinity 
values S≤30 (C). 

The inter‐annual extent analysis showed that lower salinity waters (S≤30) were found to reach a number 
of inner and mid‐shelf reefs, but none of the outer shelf reefs located at the edge of the continental 
shelf. Across the entire GBR World Heritage Area the inter‐annual variation in estimated freshwater 
plume areal extent was found to be highly correlated with flow data from stream gauges (R2=0.73) and 
to a lesser degree with Southern Oscillation Index (SOI) data (R2=0.66). The maximum freshwater extent 
over the entire GBR was observed in 2008 with an estimated area of approximately 22,000 km2. Future 
applications of this method should provide additional information on coral reef exposure duration to 
various salinity levels, which in combination with sea surface temperature data, may assist Marine Park 
management in their risk assessment of coral health in the GBR. 
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Summary 

 
Continuous monitoring of phytopigment concentrations and sea surface temperature in the 
ocean by space-borne methods makes possible estimating ecological conditions of 
ecosystems in critical areas. Unlike land vegetation, hydrological processes largely determine 
phytoplankton dynamics, which may be either recurrent or random. The types of chlorophyll 
concentration dynamics and sea surface temperature can be manifested as zones 
quasistationary by seasonal chlorophyll dynamics, quasistationary areas (QSA). 
 
Introduction 
 
The authors of the papers [4,5] showed the existence of zones that are quasi-stationary with 
similar seasonal dynamics of chlorophyll concentration at surface layer of the ocean. Results 

were obtained on the basis of processing of 
time series of SeaWiFS satellite images. It 
was shown that fronts and frontal zones 
coincide with dividing lines between quasi-
stationary areas, especially in areas of large 
oceanic streams. To study the dynamics of 
the ocean for the period from 1985 through 
2012 we used data on the temperature of the 
surface layer of the ocean and chlorophyll 
concentration (AVHRR, SeaWiFS and 
MODIS) [1,2,3] 
 
Discussion 
 
Biota of the surface oceanic layer is more 
stable in comparison with the quickly changing 
surface temperature. It enables circumventing 
the influence of a high-frequency component 
(for example, a diurnal cycle) in studying the 
dynamics of the spatial distribution of surface 
streams. In addition, an analysis of nonstable 
ocean productivity phenomena, stood out time 
series of satellite images, showed the 
existence of areas with different types of 
instability in the all Global Ocean. They are 
observed as adjacent nonstationary zones of 

Fig.1 Determination of moving variance of 
chlorophyll concentration 
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different size, which are associated by different ways with known oceanic phenomena. It is 
evident that dynamics of a spatial distribution of biological productivity can give an additional 
knowledge of complicated picture of surface oceanic layer hydrology. 

 
Figure 1 shows the diagram of deriving moving variance using the intersection of the frontal 
zone between the Labrador Current and the Gulf Stream as an example. Even though the 
seasonal progress of dynamics in chlorophyll concentration is different and so are the absolute 
chlorophyll concentrations, the variance on both sides of the frontal zone is small. The 
variance drastically increases at the intersection of the interface between the waters with 
different seasonal dynamics of chlorophyll concentration. The value of the moving variance is 
shown in the chart with different optical density.  
 
Figure 2 demonstrates different origins of the appearance of quasistationary zones in the 

ocean. We can 
see that the 
border between 

quasistationary 
zones is an 
indicator of the 
front between the 
Labrador Current 

and the Gulfstream, another example of revealed phenomenon is a quasistationary area around of 

the British Isles that correlates with the relief of the oceanic bottom.  
 

Conclusions 
 

Considering that the QSA maps are calculated almost for all surface of the Global Ocean, not 
all QSA can be explained, especially those of small size. However, some small QSA are 
interesting. There are also local QSA near estuaries of large rivers and large industrial centers, 
which can be result of human impact. 
In sum, satellite data is a powerful instrument for investigation of dynamic oceanic processes, 
their stability and instability. The result of such study can be used for monitoring of long-term 
changes and their correlation with climate dynamics.  

 
References 
 
[1] Behrenfeld M.J., O’Malley, R.T., Siegel, D.A., McClain C.R., Sarmiento J.L., Feldman, G.C., 
Milligan, A.J., et al. 2006. Climate-driven trends in contemporary ocean productivity. Nature, 
444, 752-755 
[2] Chavez, F. P., Strutton, P. G., Friedrich, G. E., Feely, R. A., Feldman, G. C., Foley, D. G., 
and McPhaden, M. J. 1999. Biological and chemical response of the equatorial Pacific Ocean 
to the 1997–98 El Niño. Science, 286: 2126–2131.  
[3] McClain, C.R., Cleave, M.L., Feldman, G.C., Gregg, W.W., Hooker, S.B., Kurig, N., 1998. 
Science quality SeaWiFS data for global biosphere research. Sea Technology. 39, 10–16 
[4] A. Shevyrnogov, G. Vysotskaya, E. Shevyrnogov, A study of the stationary and the 
anomalous in the ocean surface chlorophyll distribution by satellite data. International Journal 
of Remote Sensing, Vol. 25, №7-8, pp. 1383-1387, April 2004  
[5] A. P. Shevyrnogov, G. S. Vysotskaya, J. I. Gitelson, Quasistationary areas of chlorophyll 
concentration in the world ocean as observed satellite data Advances in Space Research, 
Volume 18, Issue 7, Pages 129-132, 1996  



Sea ice properties in the Bohai Sea measured by MODIS-Aqua: Satellite Algorithm and 
Study of Sea Ice Seasonal and Interannual Variability 

Wei Shi1,2* and Menghua Wang1 

 
1NOAA/NESDIS Center for Satellite Applications and Research (STAR), 

E/RA3, 5830 University Research Ct., College Park, MD 20740, USA  
2CIRA, Colorado State University, Fort Collins, CO, USA 

*Presenter, Email: wei.1.shi@noaa.gov 
 

 
1. Satellite algorithm development (Shi and Wang, 2012a) 

Based on the fact that sea ice reflectance drops significantly in the shortwave infrared 
(SWIR) wavelengths, black pixel assumption is assessed for three SWIR bands for the Moderate 
Resolution Imaging Spectroradiometer (MODIS)-at 1240, 1640, and 2130 nm-over the sea ice in 
the Bohai Sea in order to carry out atmospheric correction for deriving sea ice reflectance 
spectra. For the SWIR 1240 nm band, there is usually a small (but non-negligible) reflectance 
contribution over sea ice. Although there is a slight sea ice reflectance contribution at the 
MODIS 1640 nm band over sporadic land-fast or hummock ice, the black pixel assumption is 
generally valid with the MODIS bands 1640 and 2130 nm in the Bohai Sea. Thus, the SWIR-
based atmospheric correction algorithm using MODIS bands at 1640 and 2130 nm can be 
conducted to derive sea ice optical properties in the region. Based on spectral features of the sea 
ice reflectance, a regionally optimized ice-detection algorithm is proposed. This regional 
algorithm shows considerable improvements in detecting sea ice over the Bohai Sea region, 
compared with a previous MODIS global sea ice detection algorithm. The sea ice coverage as 
identified in the new algorithm matches very well with the sea ice coverage from both the 
MODIS true color image and the imagery from the Interactive Multisensor Snow and Ice 
Mapping System (IMS). 

 
2 Study of sea ice seasonal and interannual variability (Shi and Wang, 2012b) 

During the 2009-2010 winter, the Bohai Sea experienced its most severe sea ice event in 
four decades, which caused significant economic losses, affected marine transportation and 
fishery, and impacted the entire marine ecosystem in the region. Measurements from the 
Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite from 2002 to 
2010 and surface atmosphere temperature (SAT) data from the National Centers for 
Environmental Prediction (NCEP) are used to study and quantify the extreme sea ice event in the 
2009-2010 winter and the interannual variability of the regional sea ice properties, as well as the 
relationship between sea ice and the climate variability in the Bohai Sea. The mean sea ice 
reflectance from MODIS-Aqua visible and near-infrared wavelengths are 933%, 13.26%, and 
12.60% in the months of December 2009, January 2010, and February 2010, respectively, 
compared with the monthly average sea ice reflectance values (from 2002 to 2010) of 9.35%, 
11.21%, and 11.41% in the same three winter months. The sea ice monthly average coverages 
are similar to 5427, similar to 27,414, and similar to 21,156 km(2) in these three winter months. 
These values are significantly higher than the averages of monthly sea ice coverage of similar to 
2735, similar to 11,119, and similar to 10,287 km(2) in the Bohai Sea in December, January, and 
February between 2002 and 2010. Most of the sea ice coverage was located in the northern 
Bohai Sea. Both the intra-seasonal and interannual sea ice variability in the Bohai Sea is found to 



be related closely to SAT. The mechanism of anomalous SAT and intense sea ice severity are 
also discussed and attributed to large-scale climate changes due to the variability of the Arctic 
Oscillation (AO) and Siberian High (SH).  
 

 

 

Figure caption: 
Normalized surface-leaving reflectance at wavelengths of (a) 412 nm (deep blue), (b) 443 nm (blue), (c) 555 nm 
(green), (d) 645 nm (red), (e) 859 nm (NIR), and (f) 1240 nm (SWIR) derived from MODIS-Aqua measurements on 
February 12, 2010. 
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Ocean color products have been routinely produced from the Visible Infrared Imaging 
Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (S-NPP) using the 
Interface Data Processing Segment (IDPS) since its launch in October of 2011. Recently, VIIRS 
ocean color Environmental Data Records (EDR), e.g., normalized water-leaving radiance spectra 
nLw(λ), chlorophyll-a concentration (Chl-a), have been declared as the Beta status. Thus, VIIRS 
ocean color EDR is now available to public through NOAA Comprehensive Large Array-data 
Stewardship System (CLASS). Although IDPS-produced ocean color EDR is quite reasonable 
compared with in situ data, on-orbit vicarious calibration has not been carried out for the IDPS 
ocean color products. There are some bias errors in the current IDPS-produced ocean color 
products. It is well known that, in order to derive accurate satellite ocean color products, post-
launch on-orbit vicarious calibration is necessary [1]. In this presentation, we describe a 
vicarious calibration approach for deriving vicarious gains for VIIRS M1 to M7 bands for the 
IDPS operational ocean color data processing. The vicarious gains for VIIRS sensor are derived 
using the in situ nLw(λ) data that have been acquired with the Marine Optical Buoy (MOBY) 
system over oligotrophic waters off Hawaii [2]. With the vicarious calibration gains applied to 
the VIIRS M1 to M7 bands, ocean color products (nLw(λ) and Chl-a) from VIIRS IDPS 
operational data processing can be significantly improved. 

Specifically, in the vicarious calibration approach, the gain coefficients for the VIIRS two 
near-infrared (NIR) bands (M6 and M7) at wavelengths of 745 and 862 nm are first derived and 
tested over the MOBY site and the South Pacific Gyre region. MOBY in situ nLw(λ) data for 
VIIRS spectral bands since January 2012 have been used to iteratively compute the vicarious 
gains for the VIIRS M1 to M5 bands. Based on results from iterative nLw(λ) matchup procedure, 
VIIRS vicarious gains are adjusted and derived for VIIRS bands M1 to M5 with the best 
matchups of satellite versus MOBY in situ measurements.  

From results of extensive evaluations and assessments, we show that with the vicarious 
calibration VIIRS IDPS-produced ocean color products are significantly improved. In addition, 
some detailed analyses and discussions for the impact of vicarious calibration on ocean color 
products are provided. We show that, although there are still some important issues, VIIRS can 
potentially provide high-quality global ocean color products in support of the science researches 
and various operational applications.  
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Abstract: 
 
The biological carbon pump is thought to export anywhere from 5 to 12 Pg C each year 
from the surface ocean depth in the form of settling organic particles and its functioning 
is crucial for the global carbon cycle. Assessments of the global export flux have either 
been through the extrapolation of point measurements to global scales or the results of 
ocean system model experimentation. Satellites resolve relevant space and time scales 
providing guidance to the empirical extrapolation problem, but they do not quantify 
directly carbon export.  Here, we introduce a mechanistic approach for assessing global 
carbon export by accounting for 1) the size distribution of phytoplankton leading to the 
direct sinking of algal carbon biomass and 2) upper ocean mass budgeting of 
phytoplankton carbon and the production of fecal export mediated by zooplankton 
grazing. The resulting export flux model does an excellent job reproducing regional 
export flux observations and it reproduces the basic patterns of export spatially and 
seasonally, predicting a global export of 5.9 (±1.3) Pg C per year. A sensitivity analysis 
shows a relatively weak dependence of the global flux summaries to large changes in the 
four model parameters. Our approach provides many insights for future research on 
carbon export and ecosystem trophic dynamics.   
 



Seasonal to Interannual Variability in Phytoplankton Biomass and Diversity on the New England 

Shelf: In Situ Time Series to Evaluate Remote Sensing Algorithms 

Heidi M. Sosik 

Biology Department, MS 32 

Woods Hole Oceanographic Institution 

Woods Hole, MA 02540-1049 

hsosik@whoi.edu 

 

Hui Feng 

Ocean Process Analysis Laboratory (OPAL) 

University of New Hampshire 

Durham, NH 03824 

Hui.Feng@unh.edu 

 

 

We are exploring and evaluating algorithms that can be applied to remotely sensed ocean color 

data, extending beyond phytoplankton biomass to the possibility of functional group or size-

class-dependent biomass retrievals. We have approached this challenge with unique 

phytoplankton time series observations made possible by new sensor technology deployed at an 

ocean observatory on the New England Shelf near Woods Hole, Massachusetts. Observations of 

phytoplankton and optical properties are being made at the Martha’s Vineyard Coastal 

Observatory (MVCO), with focus on the combination of automated submersible flow cytometry 

and automated above water ocean color radiometry (AERONET-OC) (Figure 1). 

 

 
 

Figure 1. Autonomous sampling strategies at the Martha’s Vineyard Coastal Observatory offshore tower 

site include an AERONET-OC SeaPRISM unit deployed on the rail of the tower, and Imaging 

FlowCytobot, shown here in its pressure housing ready for underwater deployment on the tower. 

Additional measurements and sample collection are conducted as part of water column profiles on trips to 

the site on a coastal vessel. 

 

Our results show the MVCO study site is an excellent test case for a range of optical approaches 

to characterizing phytoplankton properties. The time series acquired to date emphasize that there 

are dramatic seasonal and some interannual fluctuations in the phytoplankton community, both 
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with respect to size structure (Figure 2) and taxonomic composition, thus providing a means to 

determine which types of algorithms can capture these changes.  

  
 
Figure 2. Time series of phytoplankton carbon biomass for the whole community and the microplankton 

(>20 m) size fraction (upper panel) and the corresponding fraction of carbon in the microplankton 

(lower panel) at MVCO. Individual cell biovolumes are estimated from light scattering for small cells 

(Olson et al. 2003) and from 2D images for large cells and chains (Moberg and Sosik 2012); then carbon 

is estimated from cell volume according to published relationships (Menden-Deuer and Lessard 2000). 

Results shown here are for time points that include complete manual verification of image classification 

results ensuring highest quality estimates not affected by errors such as possible misidentification of 

detrital particles as plankton by automated classification approaches (Sosik and Olson 2007). 

 

Efforts to date have focused primarily on evaluation of absorption- and pigment-based estimation 

of community cell size properties and pigment-based characterization of broad taxonomic 

groups. We find that published absorption- and pigment-algorithms both reproduce general 

patterns of seasonality, but tend to overestimate the contribution of microplankton in this system. 

In situ carbon-based taxonomic contributions are correlated with taxon biomass as Chl-a derived 

from published HPLC pigment algorithms, though relationships are non-linear and unexplained 

variance can be high, likely due in part to variation in carbon-to-Chl ratio with taxa and growth 

conditions. Preliminary assessment of published remote sensing algorithms for taxonomic 

indicator pigments shows they tend to underestimate at high concentrations such that retrieved 

seasonality is damped compared to in situ assessment.   
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Simultaneous (one-step) retrieval of aerosol and marine parameters by means of inverse 
techniques based on coupled atmosphere-water radiative transfer modeling and optimal 
estimation can yield a considerable improvement in retrieval accuracy based on radiances 
measured by MERIS, MODIS, and similar instruments (Li et al., Int. J. Rem. Sens., 29, 5689-
5698, 2008) compared with traditional (two-step) methods based on atmospheric correction 
which frequently lead to negative water-leaving radiances in turbid coastal waters. This one-step 
approach relies on adequate models describing the inherent optical properties (IOPs) of the 
atmosphere (aerosols) and the turbid water. However, recent experience 
(ftp://ccrropen@ftp.coestcolour.org/RoundRobin/CCRRreport.pdf with an annex: 
 ftp://ccrropen@ftp.coastcolour.org/RoundRobin/CCRR_report_OCSMART.pdf) shows that 
IOPs produced by currently available bio-optical models do not match in situ measured IOPs very 
well, and give pigment absorption values that are smaller than the measured ones for high 
concentrations of pigmented particles found in turbid coastal waters. To remedy this problem we 
describe a different approach similar to that advocated by Stramski et al. (Applied Optics, 40, 
2929-2945, 2001), and more recently by Zhang et al. (Applied Optics, 51, 5085-5099, 2012), in 
which we adopt two different groups of particles, one to mimic pigmented particles (characterized 
by its size distribution and refractive index with respect to water), and another group representing 
non-pigmented particles (characterized by its own size distribution and refractive index). Then we 
use the measured IOPs to determine that combination of size distributions, refractive indices, and 
mixing proportions of pigmented and non-pigmented particles which gives the optimum match 
between modeled and measured IOPs. This approach to IOP modeling of scattering and absorbing 
particles in the water is analogous to that currently used by NASA to describe aerosol IOPs 
(Ahmad et al., Applied Optics, 49, 5545-5560, 2010). It will be demonstrated that this consistent 
description of atmospheric and water IOPs leads to improved ability to retrieve aerosol and 
marine parameters in coastal environments through a one-step forward-inverse modeling 
approach based on coupled atmosphere-water radiative transfer modeling and optimal estimation. 
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Summary 
 

The POLYMER algorithm has been initially developed to process MERIS imagery, in particular in 
presence of intense sun glint. It has proven to be reliable, accurate and insensitive to many 
artifacts like light cloud contamination, improving greatly the usefulness of the MERIS data. 
Work is under progress to adapt the Polymer concept to other present ocean color sensors like 
MODIS and VIIRS. We are presenting preliminary results of application to VIIRS. 

 
Introduction 

 
The POLYMER algorithm [1] has been developed initially to improve atmospheric and glitter 
correction because of the two following rationales: 

- The MERIS data exhibits large areas of sun-glint contamination that could not be treated 
correctly by the current atmospheric correction schemes extrapolating from the NIR 

-  The model of atmospheric scattering is simplified by using a polynomial of the 
wavelength, that allows to account for the multiple interactions between molecular and 
aerosol scatterings (and glitter) without reference to a specific aerosol model 

It has been selected as the MERIS processor in the frame of the Ocean Colour Climate Change 
Initiative after an extensive comparison with other atmospheric correction algorithms [2]. 
 
MERIS processing 
 
An example of the L2 product is given in 
Fig.1. The standard product processed by 
the standard MERIS Ocean Colour 
product (processed by MEGS) is also 
shown for comparison. Polymer allows 
retrieving effectively a consistent 
Chlorophyll pattern along the West 
Coast of Madagascar that is affected by 
an intense glitter pattern (up to 20% 
reflectance) and blacked out by the 
Megs processing. The POLYMER product 
is also less affected by the presence of 
clouds and less noisy than the Megs 
product. These merits are of paramount 
importance when compositing L3 
products over a period. 
 
 
 

  
Fig.1: Example of level 2 chlorophyll-a concentration 
products from Dec. 21, 2003 over the Mozambique 
Canal, derived from MERIS data with Polymer (left) 

and MEGS (right) processors 



 
VIIRS Processing 
 
The POLYMER algorithm has been adapted to the processing of VIIRS data using its channels in 
the Visible and NIR. Preliminary results are shown in Fig.2 as well as the standard processing by 
NASA (processed by SeaDAS). We can see that the spatial coverage is higher for Polymer, and 
unlike the standard processing, do not show artifacts in the vicinity of the sun glint pattern. 
 

 
Fig. 2: example of level 3 composite of VIIRS chlorophyll-a concentration in the 
Atlantic Ocean from March 1-4, 2012, processed by Polymer (left) and SeaDAS 

(right). 
 
Discussion 
 
Due to a sensor-independent approach and an already successful application to multiple 
sensors, Polymer is an obvious candidate to the processing of OLCI data at Level 2. It performs 
best when applied to MERIS who has an excellent inter-band radiometric calibration thanks to 
its in-flight solar panel calibration and is less sensitive to the absolute radiometric calibration. It 
is a recommendation to the future to have a strong requirement on the specification of the 
inter-band radiometric. 
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Summary
In many coastal and inland waters environment effects hamper the correct retrieval of water quality
parameters from remotely sensed imagery. SIMEC (SIMilarity Environment Correction), a new approach
for the correction of adjacency effects is presented in this paper. SIMEC is applied to a MERIS match-up
dataset over coastal and inland waters.

Introduction
Several new satellites such as Sentinel-2, Sentinel-3 and the hyperspectral satellites EnMAP and PRISMA
will be launched in the near future. These EO sensors will provide a wealth of new data at increased
spatial, spectral and temporal resolutions. Although not all conceived as being ocean colour missions,
the inland and coastal water community could benefit considerably from these new data sources. A
higher spatial resolution extends the existing monitoring efforts to cover even the first nautical mile
from coast where the Water Framework Directive (WFD) is still in force or to lakes which are small and
have irregular shapes and can not be monitored with the existing missions.
However for these nearshore coastal and inland waters adjacency effects complicate the atmospheric
correction process. Light reflected from the nearby land can be forward scattered by the atmosphere
into the sensor field of view. This causes a “blurring” of the signal and the effect, generally known as
adjacency, background or environment effect, modifies the spectral signature of the observed pixel.
Here, we present a sensor-generic adjacency pre-processing method, the SIMilarity Environment
Correction (SIMEC). This correction method was first proposed by Sterckx et al. (2010) [1] for the
correction of airborne hyperspectral imagery. The correction algorithm estimates the contribution of the
background radiance based on the correspondence with the NIR similarity spectrum [2]. A key aspect of
the method is that no assumptions have to be made on the NIR albedo.
The objective of this paper is to validate SIMEC on MERIS images acquired from coastal and inland
waters. SIMEC is applied to correct the TOA radiance signal for adjacency effects for a series of MERIS FR
data covering the Belgian North Sea coastal waters, the turbid Scheldt estuary and a lake Vänern in
Sweden, the third largest lake in Europe.  Next, the standard MERIS processor (MEGS) is applied using
the ODESA (Optical Data processor of ESA) software, in order to retrieve the water reflectance and to
compare with in-situ measured water reflectance.

Discussion
The normalized water reflectance retrieved from ODESA-MEGS processing on MERIS FR images with and
without first applying SIMEC are compared to the in-situ measured normalized water reflectance. For
several sampling stations the MERIS retrieved normalized water reflectance is strongly underestimated



without SIMEC pre-processing with often negative water reflectance values for the first two MERIS
bands (Figure 1). The correspondence between MERIS retrieved normalized water reflectance and in-
situ measured normalized water are quantified on the basis  of the Root Mean Square Error (RMSE) and
the correlation coefficient (R²). A significant decrease in RMSE and increase in R² is observed for several
stations after SIMEC pre-processing.

Fig. 1: Comparison between in-situ measured normalized water reflectance (black diamonds) and the normalized
water reflectance extracted from MERIS FR within a 3x3 pixel box around  the in-situ point derived from the

ODESA-MEGS processor with (green triangles) and without (red squares) SIMEC pre-processing for North Sea (N)
and Lake Vänern (V) sampling points. Error bars refer to the standard deviation calculated from the retrieved

MERIS water reflectance for a 3 by 3 pixel window.

Conclusions
SIMEC is a sensor-generic approach and can therefore directly be applied to future. The performance of
SIMEC was tested on MERIS FR images acquired over coastal areas, estuaries and lakes. SIMEC had a
positive or neutral effect on the retrieved water reflectance calculated with the MERIS MEGS processor.
A decrease in the RMSE up to 400 % was observed after SIMEC pre-processing.
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Presently the Black Sea is the basin through which not only the transport streams 
of  supply,  metal  and  energy  sources  are  passed,  but  also  output  of  natural 
resources including hydrocarbon production takes place on shelf. The main wealth 
of the Black sea region is its recreational potential: comfortable weather conditions 
from May to October, unique natural landscape, properties of sea water (salinity 
~ 17 ‰ and Secchi disk ~ 15 m on the southern coast of the Crimea) and a lot of 
historical places. So in near future its using will increase. Suitable tool is needed 
to track current ecological state of the Black Sea, to forecast and to calculate 
possible scenarios of various processes and events. Currently the cooperative 
operational hydrodynamical and ecological model of the Black Sea is this tool [1]. 
The  models  of  such  class  induce  development  of  regional  algorithms  which 
provides  continuous  stream of  quantitative  and qualitative  information  about 
biooptical characteristics of the upper layer of the Black Sea. 

Main sources of these data are the measurements of the spectral radiances  of 
the ocean-atmosphere system which are made by color scanners on the Earth 
orbit.  Key  element  of  regional  biooptical  algorithm for  the  Black  Sea  is  the 
procedure of separation of the light absorption by phytoplankton and by colored 
detrital matter (sum of detritus and colored dissolved organic matter) [2, 3]. The 
example of this separation is shown on the figure. Biooptical characteristics of 
sea water such as particle backscattering coefficient in visible spectrum, spectral  
slope  of  particle  backscattering  coefficient  [4],  which  is  an  integral  part  of 
inherent optical properties of seawater (IOPs),  can be recovered, knowing the 
spectral characteristics of the coefficient of the light absorption by phytoplankton 
and by colored detrital matter and with  remote sensing reflectance.  Together 
with  in  situ measurements  of  taxonomic  composition  of  phytoplankton  they 
allows to analyze of links between IOPs and phytoplankton functional groups. 

Based on the established features of the vertical distribution (statistics of field 
measurements  of  profiles)  of  concentrations  of  chlorophyll  a and 
parameterization of the light absorption by all optically active components for 
the  individual  seasons  and  areas,  it  can  restore  the  downward  shortwave 
radiation field in the upper layer of the Black Sea [5]. This is necessary in the 
spectral approach to assess the primary production [6] and the contribution of 
short-wave radiation to the thermodynamic properties of seawater [7].
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Figure. Example of merge products of chlorophyll a concentration (up, in mg m-3) and 
absorption coefficient of colored detrital matter at 490 nm (bottom, in m-1) in the 2nd 
half of March, 2004 (left) and in the 1st half of June, 2006 (right)
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Summary	
  

	
  
A	
  team	
  of	
  about	
  three	
  dozen	
  scientists	
  in	
  the	
  coastal	
  and	
  inland	
  water	
  remote	
  sensing	
  community	
  began	
  
a	
   dialogue	
   on	
   how	
   the	
   upcoming	
  HyspIRI	
  mission	
   could	
   support	
   the	
   generation	
   of	
   coastal	
   and	
   inland	
  
data	
  products	
   and	
   applications	
  using	
   its	
   Visible	
   to	
   Short-­‐wave	
   Infrared	
  hyperspectral	
   (VSWIR)	
   imager,	
  
eight	
   thermal	
   bands	
   with	
   high	
   spatial	
   resolution.	
   This	
   group,	
   known	
   as	
   the	
   HyspIRI	
   Aquatic	
   Data	
  
Products	
  Working	
  Group	
  (HADPWG),	
  demonstrated	
  from	
  the	
   literature	
  and	
  their	
   research	
  with	
  similar	
  
data	
  sets	
  that	
  benefit	
  of	
  the	
  HyspIRI	
  mission	
  of	
  providing	
  global	
  remote	
  sensing	
  in	
  these	
  regions	
  could	
  
be	
   transformational.	
   	
   This	
   report	
   provides	
   an	
   overview	
   of	
   their	
   conclusions	
   and	
   their	
   vision	
   for	
   the	
  
future.	
  
	
  
Introduction	
  
	
  
HyspIRI	
   is	
   currently	
   planned	
   to	
   include	
   an	
   imaging	
   spectrometer	
  with	
   213	
   spectral	
   channels	
   between	
  
0.38	
   to	
   2.5	
  µm	
  on	
   0.01	
  µm	
   centers	
   and	
   a	
  multispectral	
   thermal	
   infrared	
   (TIR)	
   instrument	
  with	
   eight	
  
spectral	
  channels	
  (one	
  at	
  4 µm	
  	
  and	
  seven	
  between	
  7.5–12	
  µm)	
  [1].	
  Both	
  instruments	
  will	
  have	
  a	
  spatial	
  
resolution	
  of	
  60	
  m	
  at	
  nadir.	
  	
  The	
  spacecraft	
  is	
  also	
  planned	
  to	
  be	
  in	
  an	
  ascending	
  polar	
  orbit,	
  crossing	
  the	
  
equator	
  at	
  10:30	
  AM	
  local	
  time.	
  	
  The	
  equatorial	
  revisit	
  times	
  will	
  be	
  19	
  and	
  5	
  days	
  for	
  the	
  VSWIR	
  and	
  TIR	
  
instruments,	
   respectively	
   [1].	
   	
   The	
   instrument	
  will	
   have	
   14bit	
   radiometric	
   resolution,	
   2%	
   polarization	
  
sensitivity,	
   and	
   a	
   4°	
   degree	
  westward	
   tilt	
   to	
   reduce	
   solar	
   specular	
   reflectance.	
   The	
   projected	
   SNR	
   of	
  
HyspIRI	
  is	
  better	
  than	
  that	
  of	
  Hyperion,	
  comparable	
  to	
  that	
  of	
  the	
  Hyperspectral	
  Imager	
  for	
  the	
  Coastal	
  
Ocean	
   (HICO)	
   sensor	
   on	
   board	
   the	
   International	
   Space	
   Station	
   (ISS),	
   and	
   is	
   considered	
   reasonably	
  
adequate	
   for	
   accurately	
   retrieving	
   hyperspectral	
   reflectance	
   from	
   water	
   surface	
   for	
   typical	
   coastal	
  
conditions.	
  
	
  
Discussion	
  
	
  
Coastal	
  ecosystems	
  are	
  amongst	
  the	
  most	
  productive	
  in	
  the	
  world,	
  playing	
  a	
  major	
  role	
  in	
  water,	
  carbon,	
  
nitrogen,	
   and	
   phosphorous	
   cycles	
   between	
   land	
   and	
   sea.	
   Furthermore,	
   coastal	
   regions	
   are	
   home	
   to	
  
about	
  two	
  thirds	
  of	
  the	
  world’s	
  population	
  [3].	
  	
  Coastal	
  counties	
  in	
  the	
  USA	
  alone	
  produced	
  nearly	
  40%	
  
of	
  that	
  country’s	
  GDP[4].	
  The	
  wellbeing	
  these	
  human	
  communities	
  and	
  their	
  economies	
  depends	
  on	
  the	
  
status	
   of	
   coastal	
   ecosystems.	
   	
   Significant	
   degradation	
   and	
   loss	
   of	
   wetlands	
   [5],	
   corals,	
   submerged	
  
aquatic	
  vegetation	
   (SAV),	
  have	
  occurred	
   [6].	
   Studies	
  of	
   coastal	
  and	
   inland	
  water	
  ecosystems	
  structure	
  
and	
  function,	
  and	
  how	
  they	
  interrelate,	
  are	
  critical	
  to	
  understand	
  and	
  protect	
  these	
  valuable	
  resources.	
  
	
  
These	
  marginal	
   regions	
  between	
   land	
  and	
  sea	
  support	
  valuable	
  ecotones	
  that	
  are	
  highly	
  vulnerable	
  to	
  
shifts	
   in	
   the	
   environment,	
   whether	
   from	
   climate	
   change	
   and	
   its	
   consequences	
   (e.g.,	
   sea-­‐level	
   rise),	
  
human	
   activities	
   (e.g.,	
   eutrophication	
   or	
   changes	
   to	
   existing	
   watershed	
   hydrology),	
   or	
   natural	
  



disturbances	
  (e.g.,	
  storms	
  or	
  tsunamis).	
   	
  The	
  so-­‐called	
  “Decadal	
  Survey”	
  (NRC	
  2008)	
  [7],	
  which	
  defines	
  
the	
  need	
  for	
  the	
  HyspIRI	
  mission,	
  also	
  identifies	
  climate	
  change	
  as	
  being	
  more	
  critical	
  to coastal	
  regions	
  
than	
  any	
  other.	
  Establishing	
  baseline	
  maps	
  and	
  inventories	
  for	
  these	
  ecosystems	
  would	
  be	
  an	
  important	
  
contribution	
  to	
  that	
  end.	
   	
  Because	
  these	
  drivers	
  of	
  changes	
  can	
  occur	
  on	
  large	
  scales	
  or	
  even	
  globally,	
  
spaceborne	
  remote	
  sensing	
   is	
  a	
  key	
  tool	
  for	
  studying	
  these	
  environments.	
   	
   In	
  particular,	
  hyperspectral	
  
imagery	
   is	
   a	
   valuable	
   tool	
   to	
   assess	
   coastal	
   ecosystem	
   status,	
   distribution,	
   and	
   composition	
   [8].	
   The	
  
HyspIRI	
  mission	
  in	
  particular	
  is	
  well	
  situated	
  to	
  produce	
  global	
  maps	
  of	
  coastal	
  ecosystems	
  and	
  improve	
  
our	
   understanding	
   how	
   these	
   communities	
   are	
   distributed,	
   structured,	
   and	
   function.	
   This	
   supports	
  
coastal	
  ecosystem	
  research	
  and	
  environmental	
  conservation	
  and	
  management.	
  
	
  
Conclusions	
  
	
  
The	
   HADPWG	
   has	
   pooled	
   its	
   resources	
   and	
   research,	
   performed	
   further	
   analyses	
   regarding	
   specific	
  
technical	
   issues,	
   and	
   synthesized	
   the	
   compiled	
   information	
   into	
  a	
   list	
  of	
  prioritized	
  data	
  products	
  and	
  
applications.	
  	
  These	
  are	
  broken	
  into	
  five	
  major	
  areas:	
  
	
  

1. Wetland	
  Cover	
  Classification	
  and	
  Mapping	
  –	
  e.g.,	
  tidal	
  marshes,	
  mangrove	
  forests,	
   fresh	
  water	
  
wetlands,	
  and	
  boreal	
  wetlands).	
  

2. Water	
  Surface	
  Features	
  and	
  Floating	
  Vegetation	
  (Pleuston)	
  –	
  e.g.,	
  oil	
  emulsions,	
  kelp,	
  sargassum	
  
mats,	
  sea	
  lettuce,	
  floating	
  debris)	
  

3. Water	
   Column	
   Constituents	
   –	
   e.g.,	
   inherent	
   and	
   apparent	
   optical	
   properties,	
   phytoplankton	
  
pigments,	
  CDOM,	
  and	
  tripton.	
  

4. Benthic	
   Cover	
   Classification	
   and	
  Mapping	
   –	
   e.g.,	
   coral	
   and	
  mollusk	
   reefs,	
   submerged	
   aquatic	
  
vegetation,	
  and	
  algal	
  mats.	
  

5. Shallow	
  Water	
  Bathymetry	
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Improving remote sensing water quality algorithms 

 

Twardowski, M., H. Groundwater, J. Sullivan, N. Stockley, Z. Lee 

 

Work on improving algorithms for determining suspended particulate matter (SPM) and chlorophyll 

concentration from inherent optical property (IOP) measurements will be presented, as this is a critical 

link to developing improved semi-analytical algorithms for determining these parameters from remotely 

sensed reflectance.   Data collected in northern Lake Michigan in the summer of 2012 will be included in 

the analysis.  One of the limitations of using IOPs such as attenuation or backscattering as proxies for a 

parameter such as SPM is those relationships are dependent on the composition of the particle 

population, most importantly variability in size distributions and bulk refractive index.  Other techniques 

have been developed, however, to estimate these particle characteristics from certain IOPs, so that 

there is potential for combining algorithms to determine water quality parameters with a semi-

analytical or fully analytical algorithm from a suite of IOPs with greater accuracy than current empirical 

relationships.  
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Summary 
 
Spatial and temporal dynamics in trace gas pollutants were examined over urban estuarine and coastal 
ecosystems in the US, Europe and Korea, using a new network of ground‐based Pandora spectrometers. 
Our measurements showcase the strong temporal and spatial gradients in atmospheric nitrogen dioxide 
(NO2)  typically  observed  in  moderately  to  highly  polluted  coastal  areas  in  both  developed  and 
developing  countries. Ground  based measurements were  combined with  satellite  observations  from 
Aura‐OMI, air‐quality model simulations, and radiative transfer calculations to assess impacts on ocean 
color atmospheric corrections and retrievals of coastal ocean biogeochemical variables. 
 
Introduction 
 
Among the  largest sources of uncertainty for satellite ocean color retrievals  in near‐shore waters close 
to heavily polluted urban centers is the strong temporal variability and spatial gradients in atmospheric 
absorbing trace gases (e.g., NO2) associated with industrial emissions, traffic, construction, heating and 
other  anthropogenic  activities  [1]. Atmospheric  pollution  over  near‐shore waters  can  be  transported 
back  inland through sea breeze circulations, and converge with freshly emitted pollutants, aggravating 
air  pollution  levels  and  deposition  of  atmospheric  pollutants  along  the  shoreline. Moreover,  strong, 
prolonged  sea  breeze  events  can  transport  a  large  amount  of  urban  air  pollution  into  the  free 
troposphere, where pollutants have longer lifetime and are susceptible to long range transport offshore 
and over adjacent shelf and open ocean environments [2]. If not adequately corrected, this variability in 
coastal atmospheric composition can  impose a  false  impression of  temporal and  spatial variability on 
the  coastal  ocean  optical  and  biogeochemical  properties  retrieved  from  space  [3].  Consideration  of 
these errors  is  important for measurements from polar orbiting ocean color (OC) satellite sensors, but 
becomes particularly critical for geostationary satellite missions that aim at providing higher frequency 
and higher spatial resolution observations of ocean dynamics from a geostationary orbit. 
 
Discussion 
 
High frequency (every 2 min) measurements from our network of ground‐based Pandora spectrometers 
provided  the  capability  to  capture  the  strong  temporal  and  spatial  variability  typically  characterizing 
atmospheric  composition  in  coastal  urban  areas  [1]  [4]  [5]. Our measurements  in US,  European  and 
South Korean coastal areas show that NO2 changes frequently exceed 0.5 DU over a period of an hour 
and 1 DU over a period of less than 3 hours (Figure 1). Local maxima in TCNO2 typically occur early in the 
morning with  secondary  peaks  often  observed  later  in  the  afternoon  associated with  rush‐hour NOx 
emissions.  With  a  footprint  of  approximately  12  km  x  24  km  at  nadir,  and  less  sensitive  to  NO2 
concentrations near the surface where NOx  is emitted, Aura‐OMI does not typically capture the strong 



spatial  and  temporal  variability  in  NO2  observed  by  the 
Pandora network and predicted by air quality models such 
as CMAQ   (Community Multi‐scale Air Quality model). On 
a  sun‐synchronous  polar  orbit  and  with  an  overpass  at 
around  13:30  local  time,  Aura‐OMI misses  the morning 
and late afternoon rush‐hour peaks in TCNO2 observed by 
the Pandoras and predicted by the air‐quality model over 
urban  areas,  providing  a  satellite  image  of  TCNO2  under 
relatively  low  near‐surface  emission  conditions.  Pandora 
observations were  combined with high‐resolution CMAQ 
simulations, and detailed radiative transfer calculations to 
evaluate how the observed variability in NO2 affects ocean 
color  retrievals  from  polar  orbiting  or  geostationary 
satellite  sensors  if  not  corrected,  or  if  atmospheric 
correction  is  based  on  climatology, measurements  from 
other satellite instruments in sun‐synchronous orbits (e.g. 
Aura‐OMI), or coarser (and non‐coincident) geostationary 
observations. 
 
Conclusion 
 
Our results show that high spatial and temporal resolution measurements of atmospheric NO2 are 
critical in urban coastal areas to 1) better understand atmospheric dynamics at higher spatial resolution 
than is currently available from satellite observations, 2) capture the high temporal variability associated 
with local pollution patterns and photochemical processes, and 3) apply results to improve ocean color 
atmospheric corrections and retrievals of coastal ocean biogeochemical variables from space. 
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Summary 

We present a dataset that combines marine reflectance spectra and several standard L2 products from 
MERIS and MODIS, with turbidity (T), Photosynthetically Available Radiation (PAR) at different depths, 
and fluorescence (F) from three autonomous buoys (CEFAS’ Smartbuoys) located in turbid coastal 
waters of the North Sea and the Irish Sea. Our dataset contains several hundreds of matchups between 
in situ and satellite, and is a powerful benchmarking tool for validating satellite products and retrieval 
algorithms for turbidity and PAR attenuation. 

Introduction 

Ocean colour remote sensing is becoming well-established for the monitoring of coastal waters and 
marine science applications. Validation of satellite-derived products remains problematic, as 
simultaneous matchups of in situ data and cloud-free satellite data are sparse, and costly to obtain with 
ship-based measurements. Optical instruments on autonomous platforms can provide many more 
matchups, typically one per cloud free pixel. For moderate resolution ocean colour sensors 
(MODIS/MERIS) this is typically one matchup per cloud-free day at temperate latitudes, giving tens of 
matchups per year and hundreds over the lifetime of a satellite. 

Smartbuoys are autonomous buoys operated by CEFAS that record several parameters multiple times 
per hour. Measurements from three turbid water buoys with deployments between 2002 and 2010 
were used: WARP, (Warp Anchorage, 51.5°N, 1°E, Turbidity [5-95%]: 3-53 FTU), WGAB (West Gabbard, 
52°N, 2°E, Turbidity [5-95%]: 1-18 FTU), and LIVB (Liverpool Bay, 53.5°N, 3.3°E, Turbidity [5-95%]: 1-21 
FTU). Level 2 data from MODIS Aqua (R2012.0) and MERIS (2nd and 3rd reprocessing) was used, 
distributed respectively by NASA (OBPG - http://oceancolor.gsfc.nasa.gov/) and ESA (MERCI - 
http://merci-srv.eo.esa.int/merci/welcome.do). A kernel of 25 pixels (5x5) over each station is extracted 
from the remote sensing data, and is combined with the closest available in situ data within 60 minutes 
of the overpass (usually < 15 minutes). Fully cloudy or invalid kernels are skipped. 

Datasets included from the MODIS data are: Remote sensing reflectance (Rrs, water-leaving radiance 
with air-sea interface reflection removed divided by downwelling irradiance) at wavelengths 412, 443, 
469, 488, 531, 547, 555, 645, 667, and 678 nm. Some OBPG standard products are also included: 
aot_869, angstrom, chlor_a, cdom_index and Kd_490. Data was screened using the l2_flags, removing 
data where any of the following flags were raised: CLOUD, HISUNGLINT, LOWLW, MAXAERITER, HILT, 
HISUNGLINT and STLIGHT. Pixels with negative values in the dataset or negative values in Rrs 412, 443 or 
488 and aot_869 were dropped. For chlor_a the respective product flag (CHLFAIL) was also checked. 
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Datasets included from the MERIS data are: water leaving radiance reflectance (ρw=Rrs ) at 
wavelengths 413, 443, 490, 510, 560, 620, 665, 681, 708, 753, 778, 865 nm, aero_epsilon_865, 
aer_opt_thick_865, algal_1, algal_2, yellow_subs, and total_susp. The appropriate product confidence 
flags (PCD flags) and the CLOUD and HIGH_GLINT flags were used to mask bad data. 

Discussion 

The merged dataset contains the reflectance spectra from MODIS and 
MERIS with the corresponding in situ optical instrument data for 
hundreds of matchups between 2002 and 2010. The dataset allows for 
a validation of different reflectance based algorithms for turbidity (T) 
and PAR attenuation (Kpar). The Figure to the right shows an example 
validation of 596 high quality (with 25 unmasked pixels in the image 
kernel) MODIS turbidity [1] matchups. A robust relationship is found, 
with low relative errors. Some scatter is found in the lower T range, 
where the satellite gives lower values than the buoy. These 
discrepancies could be due to differences in the sampling of the 
scattering (backscatter/sidescatter), differences in sampling volume (a 
few cm3 for the T sensor), erroneous atmospheric correction, or fouling of the in situ sensor. 

In situ Kpar can be calculated for the buoys from the PAR sensors at different depths, and can be 
compared with Kpar products derived from remote sensing, such as [2,3]. The in situ fluorescence data 
is also included, but is known to have a bad correspondence to HPLC chlorophyll a concentrations. 
However, its relative signal can be relevant, and the data can also be useful in explaining differences 
between the in situ and remote sensing T or Kpar. 

Conclusions 

A reference dataset for coastal water ocean colour algorithm testing is presented that combines 
reflectance data from satellites and turbidity, fluorescence and PAR data from continuously measuring 
autonomous buoys. The instruments on the buoys were not intended for ocean colour remote sensing 
validation and could moreover be subject to fouling problems during extended deployments. However, 
the long time series of data, the large number of matchups, the wide concentration range, the relevant 
parameters and the high level of quality control of the datasets makes them very useful for coastal 
water algorithm testing. Following their successful use in studies from one team 
(http://www2.mumm.ac.be/remsem/publications.php), it was considered useful to make this dataset 
more widely and easily available for the ocean colour community. 
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Summary	
  

This	
   paper	
   presents	
   the	
   product	
   validation	
   activity	
   performed	
   in	
   the	
   context	
   of	
   the	
  
Mediterranean	
   Ocean	
   Colour	
   Observing	
   System.	
   Two	
   validation	
   schemes	
   are	
   presented:	
   the	
  
offline	
   and	
   the	
   online	
   validation.	
   The	
   former	
   refers	
   to	
   the	
   computation	
   of	
   basic	
   statistical	
  
quantities	
   between	
   satellite-­‐derived	
   product	
   and	
   the	
   in	
   situ	
   counterpart.	
   There	
   is	
   an	
   overall	
  
good	
  agreement	
  between	
  satellite	
  and	
  in	
  situ	
  chlorophyll.	
  Among	
  the	
  analysed	
  sensors	
  SeaWiFS	
  
is	
   the	
   best	
   performing.	
   A	
   method	
   for	
   assessing	
   the	
   near	
   real-­‐time	
   product	
   quality	
   (online	
  
validation)	
   is	
   developed	
   and	
   its	
   limitation	
   discussed.	
   Main	
   results	
   are	
   concerned	
   with	
   the	
  
degradation,	
  starting	
  from	
  mid-­‐2010,	
  of	
  the	
  MODIS	
  Aqua	
  channel	
  at	
  443	
  nm	
  with	
  its	
  successive	
  
recover	
   thanks	
   to	
   the	
   new	
   calibration	
   scheme	
   implemented	
   in	
   the	
   recently	
   released	
   SeaDAS	
  
version	
  6.4.	
  
Introduction	
  
To	
   ensure	
   a	
   sustainable	
   use	
   of	
   the	
   marine	
   resources,	
   an	
   accurate	
   description	
   and	
   a	
   reliable	
  
prediction	
   of	
   the	
   ocean	
   state	
   and	
   variability	
   is	
   crucial.	
   An	
   essential	
   element	
   of	
   the	
  
Mediterranean	
  Ocean	
  Colour	
  Observing	
   System	
   is	
   tied	
   to	
   data	
   reliability	
   in	
   terms	
  of	
   both	
   the	
  
scientific	
   accuracy	
   and	
   the	
   temporal	
   consistency.	
   To	
   address	
   these	
   issues	
   two	
   validation	
  
approaches	
   are	
   here	
   described:	
   an	
   offline	
   validation,	
   every	
   time	
   a	
   significant	
   change	
   in	
   the	
  
processing	
  chain	
  takes	
  place,	
  and	
  a	
  daily	
  online	
  validation	
  aimed	
  at	
  assessing	
  the	
  degree	
  of	
  data	
  
reliability	
  based	
  upon	
  data	
  time	
  consistency.	
  
Discussion	
  
Offline	
  validation	
  
Offline	
  validation	
   refers	
   to	
   the	
   comparison	
  between	
   single	
   sensor	
   (SeaWiFS,	
  MODIS-­‐Aqua	
  and	
  
MERIS)	
   satellite	
   observations	
   and	
   the	
   corresponding	
   in	
   situ	
   measurements	
   in	
   terms	
   of	
   basic	
  
statistical	
  quantities.	
  The	
  present	
  analysis	
  relies	
  on	
  the	
  most	
  up-­‐to-­‐date	
  in	
  situ	
  CHL	
  dataset	
  for	
  
the	
   Mediterranean	
   Sea,	
   whose	
   quality	
   has	
   been	
   improved	
   through	
   a	
   careful	
   analysis	
   of	
   the	
  
single	
  CHL	
  profiles.	
  There	
  is	
  an	
  overall	
  good	
  agreement	
  between	
  satellite-­‐derived	
  CHL	
  and	
  in	
  situ	
  
OWP	
   (Optically	
   Weighted	
   Pigment	
   concentration).	
   This	
   work	
   presents	
   the	
   first	
   validation	
  
exercise	
   performed	
   over	
   MODIS	
   and	
   MERIS	
   Mediterranean-­‐adapted	
   algorithms	
   in	
   the	
   basin.	
  
Scatterplots	
  highlights	
  a	
  general	
  underestimation	
  by	
  MODIS	
  and	
  MERIS	
  (2nd	
  reprocessing),	
  while	
  
SeaWiFS	
  appears	
  to	
  be	
  the	
  best	
  performing.	
  Despite	
  the	
  lower	
  number	
  of	
  observations,	
  MERIS	
  
statistics	
  perform	
  slightly	
  better	
  than	
  those	
  of	
  MODIS;	
  both	
  sensors,	
  however,	
  underestimate	
  in	
  
situ	
   OWP.	
   Panels	
   in	
   Errore.	
   L'origine	
   riferimento	
   non	
   è	
   stata	
   trovata.	
   show	
   that	
   this	
  
underestimation	
   is	
   particularly	
   evident,	
   for	
   MODIS,	
   in	
   correspondence	
   of	
   OWP	
   values	
   lower	
  
than	
   1	
   mg	
   m-­‐3,	
   while	
   larger	
   values	
   do	
   agree	
   quite	
   well;	
   on	
   the	
   other	
   hand,	
   MERIS	
  
underestimation	
  is	
  concerned	
  with	
  the	
  entire	
  CHL	
  range	
  of	
  variability.	
  
Online	
  Validation	
  
The	
   aim	
   of	
   the	
   online	
   validation	
   is	
   to	
   assess	
   the	
   temporal	
   consistency	
   of	
   daily	
   satellite	
  
observations	
  through	
  the	
  use	
  of	
  both	
  previous	
  day	
  data	
  and	
  of	
  the	
  daily	
  climatological	
  satellite	
  
data.	
  These	
  climatology	
  maps	
  have	
  been	
  created	
  using	
  the	
  data	
  falling	
  into	
  a	
  moving	
  temporal	
  
window	
  of	
  ±	
  5	
  days,	
  and	
  include	
  the	
  daily	
  climatological	
  standard	
  deviation	
  (STD)	
  on	
  a	
  pixel-­‐by-­‐
pixel	
  basis.	
  The	
  current	
  day	
  data	
  temporal	
  consistency	
  is	
  evaluated	
  into	
  two	
  successive	
  steps.	
  



 

First,	
   checking,	
   on	
   a	
   pixel-­‐by-­‐pixel	
   basis,	
   whether	
   the	
   difference	
   between	
   the	
   current	
   day	
  
observation	
   and	
   that	
   of	
   the	
  previous	
  day	
   fall	
  within	
  or	
   outside	
   four	
   climatological	
   STD.	
   These	
  
pixels	
  fall	
  in	
  the	
  statistics	
  named	
  "IN/OUT	
  PrevDay".	
  In	
  case	
  previous	
  day	
  data	
  do	
  not	
  cover	
  all	
  of	
  
the	
  current	
  day	
  pixels,	
  the	
  difference	
  between	
  these	
  current	
  day	
  pixels	
  and	
  the	
  corresponding	
  
current	
   day	
   SeaWiFS	
   climatology	
   is	
   computed	
   and	
   compared	
   against	
   four	
   climatological	
   STD.	
  
These	
  pixels	
  fall	
  in	
  the	
  statistics	
  named	
  "IN/OUT	
  Clima".	
  All	
  pixels	
  for	
  which	
  neither	
  the	
  first	
  nor	
  
the	
   second	
   approach	
   can	
   be	
   applied	
   are	
   marked	
   as	
   "Missing".	
   The	
   main	
   outcome	
   of	
   this	
  
analysis,	
  performed	
  over	
  the	
  2010-­‐2011	
  sensors'	
  time	
  series,	
  is	
  that	
  MODIS-­‐derived	
  chlorophyll	
  
exhibits,	
   starting	
   from	
  mid-­‐2010,	
  a	
  severe	
  drift	
   towards	
   the	
   low	
  end	
  of	
   its	
   range	
  of	
  variability.	
  
This	
  drift	
  depends	
  in	
  turn	
  on	
  the	
  degradation	
  of	
  the	
  channel	
  at	
  443	
  nm.	
  
Conclusions	
  
Two	
   distinct	
   validation	
   processes	
   are	
  
performed	
   within	
   the	
   Mediterranean	
   Ocean	
  
Colour	
  Observing	
  System:	
   the	
  offline	
  and	
   the	
  
online	
   validations.	
   The	
   offline	
   validation	
  
refers	
   to	
   the	
   product	
   quality	
   assessment	
  
performed	
   via	
   the	
   in	
   situ	
   data	
   comparison,	
  
and	
   is	
   performed	
   every	
   time	
   a	
   significant	
  
change	
   in	
   the	
   processing	
   chain	
   takes	
   place,	
  
e.g.,	
   in	
   case	
   of	
   an	
   algorithm	
   update.	
   Main	
  
results	
   highlight	
   the	
   SeaWiFS	
   product	
   to	
   be	
  
the	
  most	
   reliable	
   in	
   terms	
   of	
   basic	
   statistical	
  
quantities,	
   while	
   MODIS-­‐	
   and	
   MERIS-­‐derived	
  
products	
   do	
   show	
   a	
   slight	
   but	
   systematic	
  
underestimation	
   of	
   the	
   in	
   situ	
   field.	
   The	
  
analysis	
   also	
   shows	
   that	
   there	
   has	
   been	
   a	
  
slight	
   SeaWiFS	
   performing	
   worsening	
   as	
  
compared	
   to	
   previous	
   results.	
   The	
   two	
  most	
  
plausible	
   causes	
   have	
   been	
   identified:	
   the	
  
processing	
   software	
   and	
   the	
   sensor	
  
degradation	
   with	
   time.	
   As	
   for	
   the	
   former,	
  
despite	
  the	
  evidence	
  for	
   the	
   improvement	
  of	
  
the	
  CHL	
   retrieval	
  at	
  global	
   scale	
  with	
  SeaDAS	
  
6.1,	
  our	
  analysis	
  do	
  demonstrate	
  that	
  the	
  CHL	
  
retrieval	
   remains	
   below	
   the	
   quality	
   target	
  
expectations	
   in	
   the	
   Mediterranean	
   Sea.	
  
Moreover,	
   there	
   is	
  also	
  evidence	
  of	
  a	
  drift	
   in	
  
the	
   SeaWiFS	
   signal,	
   which	
   has	
   not	
   fully	
  
corrected	
   by	
   the	
   vicarious	
   calibration	
   meant	
  
to	
   prevent	
   the	
   signal	
   degradation	
   with	
   time.	
   The	
   second	
   type	
   of	
   CHL	
   quality	
   evaluation	
  
presented	
  in	
  the	
  work	
  is	
  the	
  online	
  validation.	
  This	
  system	
  can	
  thus	
  be	
  used	
  to	
  inform	
  both	
  the	
  
end-­‐users	
   and	
   the	
   upstream	
  data	
   providers	
   about	
   the	
   quality	
   of	
   the	
   product	
   and	
   of	
   the	
   data	
  
sources,	
  respectively.	
  A	
  new	
  SeaDAS	
  release	
  was	
  recently	
  issued	
  with	
  a	
  new	
  calibration	
  scheme.	
  
This	
  new	
  SeaDAS	
  version	
  has	
  demonstrated	
  to	
  successfully	
  address	
  the	
  MODIS	
  calibration	
  issues	
  
in	
   the	
  Mediterranean	
  and	
  Black	
   Sea.	
  Based	
  on	
   these	
   results	
   the	
  Mediterranean	
  Ocean	
  Colour	
  
Observing	
  System	
  has	
   implemented,	
  since	
  June	
  2012,	
  SeaDAS	
  6.4	
   in	
   its	
  operational	
  processing	
  
chains	
  to	
  provide	
  users	
  with	
  state-­‐of-­‐the-­‐art	
  products	
  with	
  outstanding	
  scientific	
  quality	
  as	
  fully	
  
demonstrated	
  in	
  this	
  work.	
  

Figure	
  1:	
  Upper	
  panels	
  show	
  the	
  offline	
  validation	
  the	
  
operational	
   CHL	
   observations.	
   Left,	
   middle	
   and	
   right	
  
panels	
   represent	
   SeaWiFS,	
   MODIS	
   and	
   MERIS	
  
respectively.	
   Lower	
   panel	
   shows	
   an	
   example	
   of	
   the	
  
online	
   validation	
   analysis	
   over	
   MODIS	
   CHL	
   image	
   of	
  
the	
  December	
   the	
  13th,	
  2011.	
  Left	
   (right)	
  panels	
   refer	
  
to	
  the	
  analysis	
  performed	
  using	
  SeaDAS	
  6.1	
  (6.4),	
  and	
  
are	
  the	
  daily	
  MODIS	
  CHL	
  image	
  and	
  the	
  Quality	
  Index,	
  
respectively.	
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Summary 

Raman scattering can be a significant contributor to the emergent color spectrum of the surface ocean.  
Despite its importance, previous efforts to account for this phenomenon have not been readily 
incorporated into routine bio-optical inversions of ocean color data.  Here, we use radiative transfer 
simulations to quantify biases in optical properties retrieved from semi-analytical inversion models that 
are due to Raman scattering.  Of particular interest are significant errors (>50%) in estimates of the 
particulate backscattering coefficient (bbp).  We present an analytical approach to directly estimate the 
Raman contribution to remote sensing reflectance in all ocean color satellite wavebands.  For 
application to satellite remote sensing, spectral irradiance products in the ultraviolet from the OMI 
instrument are merged with MODIS data in the visible. The resulting global fields of Raman-corrected bbp 
show significant differences from standard bbp estimates, particularly in the clearest ocean waters where 
average biases are ~50%.  Given the interest in transforming bbp into biogeochemical quantities (e.g., 
particulate organic carbon or phytoplankton carbon), Raman scattering must be accounted for in semi-
analytical inversion schemes. 
 
Introduction 
Ocean color inversion models provide a means of relating the emergent radiance spectrum to various 
absorbing and scattering components in the surface ocean.  However, the accuracy of retrieved 
quantities depends upon our ability to account for all significant processes affecting light transmission 
and propagation in the ocean and atmosphere.  One such physical process that affects the ambient light 
field is Raman scattering, a form of inelastic scatter in which photons that interact with the medium 
(e.g., seawater) are re-emitted at wavelengths differing from the excitation source (Raman and Krishnan 
1928).   
 
Past efforts have demonstrated that Raman scattering can contribute significantly to the marine 
upwelling radiance field across all visible wavelengths to a variable degree (see Gordon, 1999 and 
references therein).  As a result, failure to account for Raman scattering when will result in errors in any 
relationships linking in-water properties to upwelling radiance or equivalently, remote sensing 

reflectance, Rrs().  Select works have accounted for the phenomenon (Sathyendranath and Platt, 1998; 
Loisel and Stramski, 2000), but these efforts have not been carried forward in subsequent studies or in 
the comprehensive report by the IOCCG (IOCCG volume 5).  
 

Here, we express Rrs() as the sum of an elastic scattering component and an inelastic scattering 
component due to Raman: 
 
      (   

 )       (   
 )           (   

 )                                (1) 
 
We are subsequently able to develop an analytical expression for the Raman component of Rrs: 
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where the subscripts ex and em refer to excitation and emission (satellite) wavelengths.  In practice, 
initial estimates of inherent optical properties (IOPs) are required, as well as incident spectral 

irradicances at excitation and emission wavelengths, Ed(0+,ex) and Ed(0+,em), respectively.  Thus, the 
procedure is applied iteratively.  In this work, we employ two inversion models currently used by NASA 
to generate evaluation products, the GSM model (Maritorena et al., 2002) and the QAA (Lee et al., 
2002). 
 
Results and Discussion 
Results obtained with simulated data (HydroLight) show that 1) the relative error in each IOP due to 
Raman scattering differs greatly between each IOP, 2) errors differ between inversion models (GSM 
versus QAA), 3) errors are greatest at low Chl and decrease with increasing Chl, and 4) errors are 
greatest in the retrieval of bbp(443).  Chl and aph(443) are overestimated by ~15-25% under the most 
oligotrophic conditions (Chl<0.02 mg m-3), and decrease to ~5% when Chl>0.3 mg m-3.  Errors in 
aCDM(443) are negligible across all trophic conditions.  Errors in bbp(443), however, can be >100% under 
oligotrophic conditions and are still ~20% when Chl>0.3 mg m-3.   
 
Application to a single monthly field of satellite remote sensing data (June 2004) yields patterns 
consistent with those diagnosed from simulated data.  For the GSM model, median Chl decreases only 
slightly (~8%) from 0.12 mg m-3 to 0.11 mg m-3 after correction for Raman.  Median phytoplankton 
absorption (aph(443)) estimated from the QAA decreases similarly (8%) following correction.  Retrievals 
of CDOM and detrital absorption, aCDM(443), are particularly insensitive to the presence of Raman 
scattering and only change by <3% for either inversion model.  The largest differences resulting from the 
Raman correction are observed in bbp(443).  Global distributions of Raman-corrected bbp(443) for both 
models show values that are much lower across most of the mid-latitudes, and to a lesser extent at high 
latitudes.  As a global average, Raman-corrected bbp(443) from GSM and QAA are shifted downward by 
~30% and 20%, respectively, but up to 30% of the ocean has errors due to Raman in excess of 50%.  This  
suggests that bbp(443) is significantly overestimated over much of the ocean when using either model 
without correction for Raman scatter.  This is of particular interest is we are to accurately transform 
these optical proxies into biogeochemical quantities. 
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Summary 

The assessment of ocean color satellite algorithms was performed for coastal waters of the Baltic Sea. 

The formulas for chlorophyll a, Kd(490), CDOM absorption at 400 nm, TSM and Secchi depth were 

tested. The in situ reflectance data gathered in the Gulf of Gdansk using RAMSES hyperspectral 

radiometers were applied in the validation. The obtained results suggest that after calibration of the 

coefficients the formulas can be used for OLCI coastal data. 

Introduction 

The Baltic Sea which is affected by eutrophication suffers from frequent algae blooms. A part of bloom-

forming organisms, like cyanobacteria, can form extensive summer blooms which can possibly have 

toxic influence on other organisms, including human beings.Thus they can affect the recreational use of 

coastal areas. Therefore, there is a need to predict and monitor the development of mass occurrence of 

phytoplankton whose dynamics has to be studied with relevant spatial and temporal resolution. Remote 

sensing techniques can provide extensive spatial coverage (synoptic view) and time-series that are 

necessary to study this problem. However, standard remote sensing algorithms often fail badly in 

the Baltic Sea waters due to high concentrations of colored dissolved organic matter (CDOM) 

and suspended particulates (SPM).A big effort to the calibrate the algorithms and to validatethe 

products has been made for the ocean color radiometers (i.a. [1]; [2]; [3]; [4]; [5]). New measuring 

opportunities will be anticipated in the Sentinel-3 mission which is planned to begin in the nearest 

future. The aim of this project was to select the most accurate formulas which could be used to derive 

optical parameters based on the  Sentinel-3 data in the coastal waters of the Baltic Sea. The following 

parameters were considered: the chlorophyll a concentration, the spectral diffuse attenuation 

coefficient of downwelling irradiance at 490nm Kd(490), the absorption coefficient of CDOM (also called 

yellow substance) at 400nm, total suspended matter (TSM) and the Secchi depth. We validated the 

algorithms developed for previous ocean color radiometers. The spectral bands used in these algorithms 

were within the Sentinel OLCI ones. 

Discussion 

The input data were the reflectance values measured in situ with the use of the hyperspectral 

radiometer TriOS RAMSES. All the reflectances used were recalculated into the Sentinel-3 bands. The 

data were collected from May to September, 2012 in the Gulf of Gdansk (Southern Baltic Sea) at five 

stations (Fig. 1). We chose nine algorithms for chlorophyll a (chl-a) concentration. Four of them were 

proposed by HELCOM [6] three were provided by Darecki & Stramski [2],whereas the remaining two 

were developed in theDESAMBEM project [5]. The best accuracy (Mean Normalised Bias (MNB) -29% 

and Root Mean Square (RMB) of 26%) was obtained using one of the DESAMBEM algorithms, whereas 

the worst was observed in the case of OC4 standard algorithm. It is not surprising, because this 

algorithm was developed for typical case 1 waters. The values of MNB and RMB for the other algorithms 

were below 100%,except for one of the algorithms proposed by Jorgensen and Berastegui (HELCOM) for 



which the MNB and RMB were higher than 120%.In the case of Kd(490)we chose algorithms proposed by 

Kratzer [3], Alikas [1], Darecki & Stramski, [2] and Mueller [4].The lowest bias was noted when the 

algorithm proposed by Mueller was applied, beside the fact that it was developed for case 1 waters. 

However the statistics obtained for the remaining formulas were very similar. The algorithms for 

ays(400) and TSM were taken from Darecki’s PhD thesis [7]. He proposed more than four algorithms for 

these two components, but we chosen these with the lowest errors. Kratzer in her paper [3] beside the 

algorithm for Kd(490) proposed also the algorithm for the SD which was the only one tested in our study, 

but the results weresatisfactory (MNB of 1% and RMB 19%).  

 

Conclusions 

The results of the validation prove the accuracy of the algorithms which were applied for previous ocean 

color space-borne sensors. It can be expected that they can be also used for OLCI sensor. However, in 

the case of coastal areas it is necessary to calibrate the coefficients used in these formulas. 
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Summary	
  

	
  
In	
  this	
  paper	
  we	
  simulate	
  and	
  report	
  the	
  Inherent	
  Optical	
  Properties	
  (IOP)	
  of	
  Emiliania	
  Huxleyi	
  (EHUX),	
  
the	
  most	
  abundant	
  species	
  of	
  the	
  coccolithophores.	
  	
  The	
  IOPs	
  include	
  the	
  Mueller	
  scattering	
  matrix,	
  
extinction	
  and	
  scattering	
  cross	
  sections.	
  	
  A	
  realistic	
  non-­‐spherical	
  model	
  is	
  built	
  for	
  EHUX	
  based	
  on	
  
electron	
  micrograph	
  of	
  coccolithophore	
  cells.	
  The	
  coccolithophore	
  model	
  includes	
  a	
  near-­‐spherical	
  core	
  
with	
  refractive	
  index	
  of	
  1.04,	
  and	
  a	
  carbonate	
  shell	
  formed	
  by	
  smaller	
  coccoliths	
  with	
  refractive	
  index	
  of	
  
1.2.	
  	
  The	
  Amsterdam	
  Discrete	
  Dipole	
  Approximation	
  (ADDA)	
  code	
  [1]	
  is	
  used	
  to	
  simulate	
  light	
  scattering	
  
by	
  non-­‐spherical	
  particles.	
  	
  The	
  impacts	
  of	
  different	
  cell	
  configuration	
  and	
  size	
  on	
  the	
  Mueller	
  scattering	
  
matrix	
  elements	
  are	
  studied.	
  	
  We	
  compare	
  our	
  results	
  with	
  a	
  previous	
  theoretical	
  model	
  based	
  on	
  
detached	
  coccoliths	
  [2]	
  and	
  ocean	
  water	
  Mueller	
  matrix	
  measurements	
  [3].	
  	
  Potential	
  usage	
  of	
  this	
  
modeled	
  Mueller	
  matrix	
  on	
  ocean	
  color	
  remote	
  sensing	
  will	
  be	
  explored.	
  
	
  
Introduction	
  	
  
	
  
Coccolithophores,	
   or	
   coccolithophorids,	
   are	
   unicellular	
   and	
   photosynthetic	
   and	
   are	
   found	
   in	
   large	
  
numbers	
   in	
   global	
   ocean	
  waters.	
   	
   They	
   provide	
   important	
   food	
   sources	
   for	
   aquatic	
   environment.	
   	
   An	
  
interesting	
  feature	
  of	
  coccolithophores	
  is	
  that	
  they	
  generate	
  calcium	
  carbonate	
  plates	
  called	
  coccoliths.	
  	
  
The	
  production	
  of	
  coccoliths	
  play	
  important	
  roles	
  in	
  carbon	
  cycle	
  by	
  their	
  CaCO3	
  production	
  in	
  response	
  
to	
   the	
   CO2	
   partial	
   pressure	
   change.	
   	
   Emiliania	
   Huxleyi	
   (EHUX)	
   is	
   the	
   most	
   abundant	
   species	
   of	
  
coccolithophores.	
   	
  They	
  can	
  produce	
  massive	
  blooms	
  that	
  have	
  large	
  impacts	
  on	
  the	
  environment	
  and	
  
fisheries.	
  	
  In	
  the	
  global	
  scale,	
  it	
   is	
  indispensible	
  to	
  use	
  ocean	
  color	
  sensors	
  such	
  as	
  MODIS	
  and	
  VIIRS	
  to	
  
study	
   the	
   effects	
   of	
   coccolithophore	
   primary	
   production	
   on	
   the	
   carbon	
   cycle	
   and	
   to	
   monitor	
   EHUX	
  
bloom	
  events.	
  	
  The	
  CALIOP	
  satellite	
  lidar	
  system	
  provides	
  valuable	
  information	
  on	
  ocean	
  waters	
  [4].	
  The	
  
combination	
  of	
  passive	
  and	
  active	
  systems	
  will	
  generate	
  a	
  plethora	
  of	
  multidimensional	
  information	
  on	
  
coccolithophores	
  and	
  other	
  oceanic	
  particles.	
  
	
  
In	
  assisting	
  the	
   interpretation	
  of	
  both	
  passive	
  ocean	
  color	
  satellite	
   images	
  and	
  active	
   lidar	
  signals,	
   it	
   is	
  
necessary	
  to	
  have	
  the	
  knowledge	
  of	
  Inherent	
  Optical	
  Properties	
  (IOP)	
  of	
  these	
  particles.	
  	
  A	
  short	
  list	
  of	
  
these	
  properties	
  include	
  absorption	
  and	
  scattering	
  coefficients,	
  beam	
  attenuation	
  coefficient,	
  scattering	
  
matrix,	
   and	
   a	
   few	
   other	
   parameters	
   used	
   in	
   different	
   applications.	
   	
   Both	
   theoretical	
   simulations	
   and	
  
experimental	
  measurements	
  are	
  used	
  to	
  obtain	
  the	
  IOP	
  for	
  oceanic	
  particles.	
  	
  The	
  microscopic	
  images	
  of	
  
coccolithophores	
   and	
  other	
  particles	
   show	
   that	
   overall	
   these	
  particles	
   are	
  not	
   spherical.	
  Nevertheless	
  	
  
spherical	
   models	
   are	
   used	
   to	
   simulate	
   IOP	
   for	
   oceanic	
   particles	
   due	
   to	
   the	
   significant	
   difficulties	
   of	
  
simulating	
   light	
   scattering	
   by	
   large	
   non-­‐spherical	
   particles.	
   	
   On	
   the	
   other	
   hand,	
   the	
   experimental	
  
measurements	
   of	
   ocean	
   waters	
   are	
   mostly	
   focused	
   on	
   absorption	
   and	
   extinction	
   coefficients,	
  
sometimes	
  volume	
  scattering	
  function	
  (the	
  11	
  element	
  of	
  the	
  scattering	
  matrix).	
  	
  The	
  complete	
  Mueller	
  
matrix	
  measurements	
  for	
  ocean	
  water	
  have	
  been	
  done	
  by	
  Voss	
  and	
  Fry	
  in	
  1984	
  [3]	
  and	
  are	
  still	
  widely	
  
cited	
   after	
   almost	
   30	
   years.	
   	
   Theoretical	
   efforts	
   have	
  been	
  made	
   to	
   simulate	
   light	
   scattering	
  by	
   small	
  



detached	
  coccoliths	
   [2].	
   	
   In	
   this	
  paper	
  we	
  present	
  an	
  effort	
  of	
   simulating	
   the	
   IOP	
   for	
   the	
  whole	
  EHUX	
  
cells.	
  	
  The	
  results	
  are	
  compared	
  to	
  the	
  detached	
  coccoliths	
  and	
  differences	
  are	
  observed.	
  
	
  
Model	
  and	
  results	
  	
  
	
  	
  
Our	
  model	
  is	
  based	
  on	
  the	
  scanning	
  
electron	
   micrograph	
   of	
   a	
   single	
  
coccolithophore	
   cell	
   (see	
   Fig.	
   1(a)).	
  	
  
The	
   coccolith	
  model	
   is	
   built	
   similar	
  
to	
   the	
   wagon	
   wheel	
   model	
  
presented	
   in	
   Gordon	
   (2007)	
   [2].	
  	
  
The	
   coccoliths	
   are	
   rotated	
   and	
  
rearranged	
   around	
   a	
   nearly	
  
spherical	
   core	
   to	
   form	
   a	
  
representation	
  of	
  the	
  EHUX	
  cell	
  (see	
  
Fig.	
  1(b)	
  for	
  an	
  example).	
  	
  The	
  index	
  
of	
   refraction	
   is	
   set	
   to	
   1.2	
   for	
   the	
  
coccoliths	
  and	
  1.04	
  for	
  the	
  spherical	
  
core.	
   	
  A	
   random	
  number	
  generator	
  
is	
   used	
   to	
   produce	
   realistic	
  
irregularities	
  for	
  the	
  EHUX	
  cell.	
  	
  The	
  model	
  is	
  then	
  transformed	
  into	
  dipole	
  representations	
  which	
  can	
  be	
  
used	
   as	
   inputs	
   to	
   the	
   Amsterdam	
   Discrete	
   Dipole	
   Approximation	
   code	
   (ADDA)	
   [1]	
   to	
   calculate	
   the	
  
complete	
  set	
  of	
  IOP	
  for	
  this	
  cell.	
  	
  Figure	
  1(c)	
  shows	
  the	
  scattering	
  matrix	
  element	
  S22/S11	
  of	
  the	
  EHUX	
  cell	
  
shown	
   in	
   Fig.	
   1(b)	
   for	
  different	
   sizes.	
   	
   The	
  average	
   scattering	
  matrix	
  measurement	
  of	
  ocean	
  water	
  by	
  
Voss	
  and	
  Fry	
   [3]	
   is	
  also	
  shown	
   for	
  comparison.	
   	
   It	
   is	
  observed	
   that	
   the	
   theoretical	
   simulations	
   for	
   this	
  
element	
  is	
  smaller	
  than	
  that	
  of	
  the	
  average	
  ocean	
  water	
  for	
  scattering	
  angle	
  smaller	
  than	
  120	
  degrees	
  
and	
  it	
  is	
  larger	
  if	
  scattering	
  angle	
  is	
  larger	
  than	
  120	
  degrees.	
  	
  It	
  is	
  also	
  interesting	
  to	
  see	
  the	
  sharp	
  peak	
  
around	
  the	
  backscattering	
  which	
  suggests	
  a	
  difficulty	
  in	
  the	
  extrapolation	
  of	
  the	
  measurements	
  towards	
  
180	
  degrees.	
  	
  We	
  will	
  present	
  some	
  systematic	
  results	
  for	
  other	
  elements.	
  
	
  
Summary	
  
	
  
A	
  realistic	
  nonspherical	
  model	
  for	
  EHUX	
  is	
  built	
  and	
  the	
  optical	
  properties	
  are	
  calculated	
  using	
  the	
  ADDA	
  
code.	
  	
  The	
  results	
  show	
  large	
  deviations	
  from	
  the	
  average	
  ocean	
  water	
  measurements.	
  The	
  spike	
  at	
  the	
  
backscatter	
  suggests	
  the	
  necessity	
  of	
  measuring	
  scattering	
  matrix	
  for	
  the	
  whole	
  set	
  of	
  scattering	
  angles.	
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Figure	
  1	
   From	
   left	
   to	
   right:	
   (a)	
  A	
   scanning	
  electron	
  micrograph	
  of	
  a	
  
single	
  coccolithophore	
  cell.	
  	
  Image	
  credit:	
  Alison	
  R.	
  Taylor	
  (University	
  
of	
   North	
   Carolina	
   Wilmington	
   Microscopy	
   Facility)	
   (b)	
   a	
   realistic	
  
model	
  representing	
  the	
  coccolithophore	
  cell	
  (c)	
  the	
  scattering	
  matrix	
  
element	
  S22/S11	
  for	
  the	
  model	
  presented	
  in	
  Fig.	
  1(b)	
  for	
  different	
  sizes	
  
(unit	
   micron).	
   The	
   measurement	
   for	
   ocean	
   water	
   by	
   Voss	
   and	
   Fry	
  
1984	
  is	
  also	
  plotted	
  for	
  comparison.	
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Summary 

Various floating algae area detecting methods have been reported using remote sensing data in open 

oceans, coastal waters and inland lakes. Yet partial coverage of floating algae in sub-pixels is always 

neglected besides atmospheric correction and diverse algae index, so that different estimations are 

always achieved in spite of using the same remote sensing image. Here, a novel algorithm to detect 

floating algae absolute area based on floating algae index (FAI)[1], namely algae pixel-growing algorithm 

(APA), is developed and applied to quantify timely floating algae area in Lake Taihu of China using MODIS 

data. 

Introduction 

According to the FAI definition [1] and the fundamental property of water color remote sensing, FAI 

value of a MODIS pixel has the linear relation with FAI values of MODIS sub-pixels. Considering that it is 

difficult to achieve the FAI of sub-pixel, we suppose that two kinds of sub-pixels make up the target pixel, 

which have the same FAI to the maximum and minimum value of a 3×3 pixels window (the target pixel is 

the central pixel of the window), which could be expressed as, 

                                  FAI𝑀𝑂𝐷𝐼𝑆
𝑝𝑖𝑥𝑒𝑙 = 𝛾 ∙ 𝐹𝐴𝐼𝑀𝑂𝐷𝐼𝑆(𝑀𝑎𝑥𝑝𝑖𝑥𝑒𝑙) + (1 − 𝛾) ∙ 𝐹𝐴𝐼𝑀𝑂𝐷𝐼𝑆(𝑀𝑖𝑛𝑝𝑖𝑥𝑒𝑙)               (1) 

where r is the decomposition parameter. For a mixed pixel of MODIS, we definite the algae coverage is 

the proportion of area covering by floating algae in a mixed pixel. Considering that the thickness of 

floating algae is variant in different area, we think that all of the mixed pixels are covered by the thinnest 

floating algae. Suppose that the relationship of FAI and coverage of a mixed pixel could be expressed as 

follows, 

                 𝐹𝐴𝐼 = α ∙ 𝐹𝐴𝐼𝑎𝑙𝑔𝑎𝑒 + (1 − α) ∙ 𝐹𝐴𝐼𝑛𝑜𝑛−𝑎𝑙𝑔𝑎𝑒 = (𝐹𝐴𝐼𝑎𝑙𝑔𝑎𝑒 − 𝐹𝐴𝐼𝑛𝑜𝑛−𝑎𝑙𝑔𝑎𝑒) ∙ α + 𝐹𝐴𝐼𝑛𝑜𝑛−𝑎𝑙𝑔𝑎𝑒        (2) 

where α is coverage of a mixed pixel, FAIalgae and FAInon-algae are the FAI threshold of floating algae and 

non-algae respectively. Then the FAI of max pixel and min pixel in a 3×3 pixels window could be 

expressed as, 

𝐹𝐴𝐼𝑀𝑂𝐷𝐼𝑆(𝑀𝑎𝑥𝑝𝑖𝑥𝑒𝑙) = m ∙ 𝛼𝑀𝑎𝑥 + k             𝐹𝐴𝐼𝑀𝑂𝐷𝐼𝑆(𝑀𝑖𝑛𝑝𝑖𝑥𝑒𝑙) = m ∙ 𝛼𝑀𝑖𝑛 + k            (3) 

where m and k are the slope and intercept respectively; αmax and αmin are the coverage of max and min 

pixels in a 3×3 pixels window respectively. Integrating Equations (1) & (3), coverage of mixed pixel could 

be described as, 

                                                    𝛼𝑀𝑂𝐷𝐼𝑆
𝑝𝑖𝑥𝑒𝑙 = γ ∙ 𝛼𝑀𝑎𝑥 + (1 − γ) ∙ 𝛼𝑀𝑖𝑛                                    (4) 
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Discussion 

Figure 1 shows some examples of algal bloom 

spatial distribution from algal pixel-growing 

algorithm using MODIS data. Algal bloom area 

identified from 24 Landsat TM/ETM+ images 

ranges from 14.8 to 505.7 km2. Compared with 

TM/ETM+ images, RSE (Relative Standard Error) 

of APA and LA (Linear algorithm) [2] in 

synchronous MODIS images is 15.2 and 24.8 

respectively, and corresponding RE (Relative Error) 

is 9.9% and 17.3%. Whatever algal bloom area is, 

APA shows better and more stable results than LA. 

Further confirmed by comparing MODIS algal 

bloom coverage histograms resulted from APA 

and LA with paired TM/ETM+ coverage histogram 

resized from 30 to 250 m. In our study, instead of 

choosing minimum value of different algal bloom 

thresholds, all pixels completely covered by pure algae in 24 MODIS images were pooled together to 

compute the FAI histogram as well as the mean and standard deviation. Considering the decentralized 

distribution of FAI value of pure algae pixels, a universal algal bloom threshold was determined as the 

mean (0.115) minus the standard deviation (0.065), which was approximately 0.050, which could include 

85.4% pure algae pixels of 24 MODIS images. The universal algal bloom threshold (FAI=0.05) was chosen as 

a time-independent FAI threshold to distinguish pure algae blooms from waters partially covered by floating 

algae. We also gathered all pixels from 24 MODIS images, the floating algae coverage of which is below 5% 

but not zero. It reveals that FAI values of low-coverage algal bloom are not fixed or centralized, which 

ranged from -0.03 to 0.02, and 85.4% of which were less than -0.002.  

Conclusions 

Algae pixel-growing algorithm (APA), a novel algorithm, is introduced here to detect floating algae 

absolute area in Lake Taihu, based on the Floating Algae Index (FAI) which is less sensitive to changes in 

environmental and observing conditions such as aerosols and solar/viewing geometry. Data comparison 

with synchronous Landsat TM/ETM+ data, APA could obtain more accurate and more stable results than 

traditional linear mixing algorithm (LA).  
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Examples of algal bloom spatial distribution from algal 

pixel-growing algorithm using MODIS data. 



Evaluation of the Quasi‐Analytical Algorithm for estimating the inherent optical 
properties of seawater from ocean color: Comparison of Arctic and lower‐

latitude waters 
 

Guangming Zheng, Dariusz Stramski, and Rick A. Reynolds 

 
Marine Physical Laboratory, Scripps Institution of Oceanography, University of California San Diego, La 

Jolla, CA 92093‐0238, U.S.A. 
Email:  Guangming Zheng, E‐mail: gzheng@ucsd.edu 

 
There is strong interest to use remote sensing of ocean color and in situ optical observations as tools 

for monitoring the ecosystem response and feedback to the environmental changes in Arctic waters.  
Current inverse reflectance algorithms were typically developed for lower‐latitude waters and their 
application to the Arctic waters needs to be evaluated because the optical properties of the Arctic 
waters can differ significantly from those of lower latitudes.  However, such an evaluation has not been 
done owing largely to a lack of comprehensive field data collected in the Arctic waters. 

Recently, a large set of field data with concurrent measurements of both inherent optical properties 
(IOPs) of seawater and radiometric quantities that enable 
determinations of apparent optical properties (AOPs) 
including the reflectance of the ocean were collected in 
the Chukchi and Beaufort Seas.  Using this new dataset 
and a lower‐latitude dataset collected in the eastern 
South Pacific and eastern Atlantic, we evaluated the 
performance of the Quasi‐Analytical Algorithm (QAA) [1], 
version 5 [2], for deriving the spectral total absorption, 
a(λ), and backscattering, bb(λ), coefficients of seawater 
from input spectrum of remote‐sensing reflectance, Rrs(λ). 

We found that the performance of QAA for estimating 
a(λ) varies from very good to fair (bias on the order of 
~10%) depending on light wavelength and the oceanic 
region (Figure 1).  For bb(λ), the QAA typically shows 
overestimation from small to as large as about 35%, with 
higher overestimation for clear waters (Figure 1).  We also 
conducted a sensitivity analysis to identify and quantify 
major sources of errors for output variables a(λ) and 
bb(λ).  The results show that, for both the Arctic and 
lower‐latitude data, the parameter u [≡bb/(a+bb)] at the 
reference wavelength of 555 nm generally contributes the 
most significant bias to bb(λ) at all wavelengths within the 
spectrum of visible light, whereas the interplay between 
u(555) and u(λ) generally dominates the errors of QAA‐
derived a(λ) except for the reference wavelength.  The 
u(λ) parameter tends to be overestimated for relatively 
clear waters, leading to overestimation of bb(λ).  One of 
main reasons for overestimating u(λ) is that the QAA 
parameterization does not account for Raman scattering 
effect, which is particularly important for relatively clear 

 
Figure 1. Comparison between QAA‐derived 
and measured total absorption and 
backscattering coefficients at example 
wavelength of 443 nm for data collected in 
the Arctic and lower‐latitude waters. 
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waters [e.g., 3, 4].  For QAA‐derived a(λ), the biases resulting from u(555) and u(λ) tend to compensate 
each other.  At short wavelengths, QAA‐derived power spectral slope, η, of the particulate 
backscattering coefficient, bbp(λ), as well as the choice of formula [5, 6, 7] for calculating the pure water 
backscattering coefficient, bbw(λ), are also important sources of bias for both bb(λ) and a(λ).  The latter 
source is particularly important in clear waters. Our findings provide guidance for future efforts towards 
refinement of the QAA and potentially also for the development of other inverse models. 
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